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Abstract. Any analytic self-map of the open unit disk induces a bounded
composition operator on the Hardy space H2 and on the standard weighted
Bergman spaces A2

α. For a particular self-map, it is reasonable to wonder
whether there is any meaningful relationship between the norms of the corre-
sponding operators acting on each of these spaces. In this paper, we demon-
strate an inequality which, at least to a certain degree, provides an answer to
this question.

1. Introduction

Let D denote the open unit disk in the complex plane and let ϕ be an analytic
self-map of D. If H is a Hilbert space of analytic functions on D, the composition
operator Cϕ on H is defined by the rule Cϕ(f) = f ◦ ϕ. While there are some
Hilbert spaces (the Dirichlet space, for example) on which there are unbounded
composition operators, every analytic ϕ : D → D induces a bounded operator on
all of the spaces we will be considering in this paper. Our main goal is to develop
a better sense of the relationship between the operator norms of Cϕ acting on
different spaces.

The Hilbert spaces of primary interest to us will be the Hardy space H2

and the weighted Bergman spaces A2
α. The Hardy space consists of all analytic

functions f on D such that

‖f‖2H2 = sup
0<r<1

∫ 2π

0

∣∣f(reiθ)∣∣2 dθ
2π

<∞.

This space is a Hilbert space, with inner product

〈f, g〉H2 = lim
r↑1

∫ 2π

0

f
(
reiθ

)
g
(
reiθ

) dθ
2π

.
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The Hardy space can be described as a reproducing kernel Hilbert space, since for
every point λ in D there is a unique function Kλ in H2 (known as a reproducing
kernel function) such that 〈f,Kλ〉H2 = f(λ) for all f in H2. In the case of the
Hardy space, it is not difficult to see that Kλ(z) = 1/(1− λz) (see Corollary 2.11
in [8]).

For α > −1, the weighted Bergman space A2
α consists of all analytic f on D

such that

‖f‖2A2
α

=
∫

D
|f(z)|2(α+ 1)(1− |z|2)α dA(z) <∞,

where dA signifies normalized area measure on D. The case where α = 0 is known
as the (unweighted) Bergman space, and is often denoted simply A2. For any α,
we write 〈·, ·〉A2

α
to denote the obvious inner product on A2

α. These spaces are all
reproducing kernel Hilbert spaces, with kernel functions Kα

λ (z) = 1/(1 − λz)α+2

(see Corollary 2.12 in [8] and Proposition 1.4 in [11]).
There is an obvious likeness between the reproducing kernels for H2 and the

analogous functions for A2
α. For the sake of efficiency, it will often behoove us to

write A2
−1 to denote the Hardy space H2, with K−1

λ = Kλ and 〈·, ·〉A2
−1

= 〈·, ·〉H2 .
We will state many of our results in these terms, with the understanding that the
α = −1 “weighted Bergman space” always signifies the Hardy space.

For any analytic ϕ : D→ D, we will write ‖Cϕ‖H to denote the norm of Cϕ
acting on a Hilbert space H. While it is generally not easy to calculate ‖Cϕ‖A2

α

explicitly, some concrete results are known – most notably in the case of the Hardy
space H2 (see [2], [3], [9], and [10]). Fortunately, it is not difficult to obtain sharp
upper and lower bounds for the norm of Cϕ. In particular, it is well known that(

1
1− |ϕ(0)|2

)α+2

≤ ‖Cϕ‖2A2
α
≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)α+2

(1)

for any α ≥ −1 (see Corollary 3.7 in [8] and Lemma 2.3 in [16]).
Reflecting on Equation (1), one might wonder whether there is some rela-

tionship between the quantities ‖Cϕ‖A2
α

for different values of α. For example,
considering α = 0 and α = −1, one might ask whether it is always the case that
‖Cϕ‖A2 = ‖Cϕ‖2H2 . While this equality does hold for some maps, it is not true in
general (see Section 4 of [4]). In this paper, we shall prove that ‖Cϕ‖A2 ≤ ‖Cϕ‖2H2

for all ϕ (see Corollary 5), answering a question posed by the authors of [4], and
derive a collection of inequalities relating to the norms of Cϕ on different spaces
(see Theorem 4).

Before proceeding to our main results, we should mention a helpful fact re-
lating to composition operators and reproducing kernel functions. Let C∗ϕ denote
the adjoint of Cϕ on a particular space A2

α; it is a simple exercise to show that
C∗ϕ
(
Kα
λ

)
= Kα

ϕ(λ) for any λ in D (see Theorem 1.4 in [8]). This observation will
provide exactly the information we need to compare the action of Cϕ on different
spaces.
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2. Positive Semidefinite Matrices

Let Λ = {λm}∞m=1, a sequence of distinct points in D, be a set of uniqueness for
the collection of analytic functions on D. In other words, the zero function is the
only analytic f with f(λm) = 0 for all m. (For example, Λ could be any sequence
with a limit point inside D.) The span of the kernel functions

{
Kα
λm

}∞
m=1

is dense
in every space A2

α, since any function orthogonal to each Kα
λm

must be identically
0. For the duration of this paper, we will assume that such a sequence Λ has been
fixed.

Consider an analytic map ϕ : D → D. For a positive constant ν, a natural
number n, and real number α ≥ −1, define the n× n matrix

M(ν, n, α) =

[
ν2

(1− λjλi)α+2
− 1

(1− ϕ(λj)ϕ(λi))α+2

]n
i,j=1

.

Recall that an n × n matrix A is called positive semidefinite if 〈Ac, c〉 ≥ 0 for
all c in Cn, where 〈·, ·〉 denotes the standard Euclidean inner product. Any such
matrix must necessarily be self-adjoint. We often write A ≥ 0 to denote A being
positive semidefinite; for self-adjoint matrices A and B, we write A ≥ B to denote
A − B being positive semidefinite. The following proposition relates ‖Cϕ‖A2

α
to

the positive semidefiniteness of M(ν, n, α).

Proposition 1. Let ϕ be an analytic self-map of D and ν be a positive constant.
Then, for any α ≥ −1, the matrix M(ν, n, α) is positive semidefinite for all natural
numbers n if and only if ‖Cϕ‖A2

α
≤ ν.

Proof. Assume first that ‖Cϕ‖A2
α
≤ ν, from which it follows that ‖C∗ϕ‖A2

α
≤ ν. In

other words,
‖C∗ϕ(f)‖2A2

α
≤ ν2‖f‖2A2

α
(2)

for all f in A2
α. Let n be any natural number and c1, . . . , cn be complex numbers,

and take f = c1K
α
λ1

+ . . . + cnK
α
λn

. If we substitute this function into inequality
(2), remembering that C∗ϕ(Kα

λ ) = Kα
ϕ(λ), we obtain

‖c1Kα
ϕ(λ1)

+ . . .+ cnK
α
ϕ(λn)‖

2
A2
α
≤ ν2‖c1Kα

λ1
+ . . .+ cnK

α
λn‖

2
A2
α

,

from which it follows that
n∑
i=1

n∑
j=1

cicj

〈
Kα
ϕ(λj)

,Kα
ϕ(λi)

〉
A2
α

≤
n∑
i=1

n∑
j=1

ν2cicj

〈
Kα
λj ,K

α
λi

〉
A2
α

,

and thus
n∑
i=1

n∑
j=1

cicj

(
ν2

(1− λjλi)α+2
− 1

(1− ϕ(λj)ϕ(λi))α+2

)
≥ 0. (3)

Inequality (3) is exactly the statement that M(ν, n, α) is positive semidefinite.
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For the converse, assume that M(ν, n, α) is positive semidefinite for all nat-
ural numbers n. Hence inequality (3) holds for all n, which in turn implies that

‖c1Kα
ϕ(λ1)

+ . . .+ cnK
α
ϕ(λn)‖

2
A2
α
≤ ν2‖c1Kα

λ1
+ . . .+ cnK

α
λn‖

2
A2
α

(4)

for any n and any complex constants c1, . . . , cn. Now let f be an arbitrary ele-
ment of A2

α. Since Λ is a set of uniqueness, the span of
{
Kα
λn

}∞
n=1

is dense in
A2
α. Hence there exists a sequence {fm}∞m=1 that converges to f in norm, where

each fm is a finite linear combination of these kernel functions. Line (4) implies
that ‖C∗ϕ(fm)‖2A2

α
≤ ν2‖fm‖2A2

α
for all m. Letting m go to infinity, we see that

‖C∗ϕ(f)‖2A2
α
≤ ν2‖f‖2A2

α
, from which it follows that ‖Cϕ‖A2

α
= ‖C∗ϕ‖A2

α
≤ ν. �

In other words, Proposition 1 states that ‖Cϕ‖A2
α
≤ ν exactly when

κ(λ, z) =
ν2

(1− λz)α+2
− 1

(1− ϕ(λ)ϕ(z))α+2

is a positive semidefinite kernel on the unit disk.
Before proceeding to our main results, we need the following lemma relating

to positive semidefinite matrices.

Lemma 2. Let n be a natural number and λ1, . . . , λn be a finite collection of (not
necessarily distinct) points in D. Any matrix of the form

M =
[

1
(1− λjλi)ρ

]n
i,j=1

,

for any real number ρ ≥ 1, must be positive semidefinite.

Proof. Let α = ρ− 2, so that α ≥ −1. Taking c = (c1, . . . , cn) ∈ Cn, we see that

〈Mc, c〉 =
n∑
i=1

n∑
j=1

cicj

(1− λjλi)α+2
=

〈
n∑
j=1

cjK
α
λj ,

n∑
i=1

ciK
α
λi

〉
A2
α

≥ 0,

from which our assertion follows. �

As a consequence of Lemma 2, we see that any matrix of the form[
1

(1− ϕ(λj)ϕ(λi))ρ

]n
i,j=1

,

where ϕ is a self-map of D, must also be positive semidefinite.

3. Norm Inequalities

The proof of our major theorem relies heavily on the use of Schur products. Recall
that, for any two n× n matrices A = [ai,j ]

n
i,j=1 and B = [bi,j ]

n
i,j=1, the Schur (or

Hadamard) product A ◦ B is defined by the rule A ◦ B = [ai,jbi,j ]
n
i,j=1. In other

words, the Schur product is obtained by entrywise multiplication. A proof of the
following result appears in Section 7.5 of [12].
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Proposition 3 (Schur Product Theorem). If A and B are n×n positive semidefinite
matrices, then A ◦B is also positive semidefinite.

We are now in position to state our main result, a theorem that allows us to
compare the norms of Cϕ on certain spaces.

Theorem 4. Take β ≥ α ≥ −1 and let ϕ be an analytic self-map of D. Then

‖Cϕ‖A2
β
≤ ‖Cϕ‖γA2

α
(5)

whenever the quantity γ = (β + 2)/(α+ 2) is an integer.

Proof. Assume that γ = (β+ 2)/(α+ 2) is an integer. Fix a natural number n and
let i, j ∈ {1, . . . , n}. A difference of powers factorization shows that

‖Cϕ‖2γA2
α

(1− λjλi)β+2
− 1

(1− ϕ(λj)ϕ(λi))β+2
=(

‖Cϕ‖2A2
α

(1− λjλi)α+2
− 1

(1− ϕ(λj)ϕ(λi))α+2

)

·

(
γ−1∑
k=0

‖Cϕ‖2kA2
α

(1− λjλi)(α+2)k(1− ϕ(λj)ϕ(λi))(α+2)(γ−1−k)

)
.

Since the preceding equation holds for all i and j, we obtain the following matrix
equation:

M(‖Cϕ‖γA2
α
, n, β) =

M(‖Cϕ‖A2
α
, n, α) ◦

γ−1∑
k=0

[
‖Cϕ‖2kA2

α

(1− λjλi)(α+2)k(1− ϕ(λj)ϕ(λi))(α+2)(γ−1−k)

]n
i,j=1

(6)

where ◦ denotes the Schur product. The matrix M(‖Cϕ‖A2
α
, n, α) is positive semi-

definite by Proposition 1. Lemma 2, together with the the Schur Product Theorem,
dictates that every term in the matrix sum on the right-hand side of (6) is pos-
itive semidefinite, so the sum itself is positive semidefinite. Therefore the Schur
Product Theorem shows that M(‖Cϕ‖γA2

α
, n, β) must also be positive semidefinite.

Since this assertion holds for every natural number n, Proposition 1 shows that
‖Cϕ‖A2

β
≤ ‖Cϕ‖γA2

α
. �

Taking α = −1 and α = 0, we obtain the following corollaries.

Corollary 5. Let ϕ be an analytic self-map of D. Then

‖Cϕ‖A2
β
≤ ‖Cϕ‖β+2

H2

whenever β is a non-negative integer. In particular, ‖Cϕ‖A2 ≤ ‖Cϕ‖2H2 .



6 Hammond and Patton

Corollary 6. Let ϕ be an analytic self-map of D. Then

‖Cϕ‖A2
β
≤ ‖Cϕ‖(β+2)/2

A2

whenever β is a positive even integer.

Corollary 5 is particularly useful since, as we have already mentioned, more
is known about the norm of Cϕ on H2 than on any other space. Hence any result
pertaining to ‖Cϕ‖H2 can be translated into an upper bound for ‖Cϕ‖A2

β
. The

significance of Corollary 6 will become apparent in the next section.
There are certainly instances of analytic ϕ : D→ D for which there is equality

in line (5) for all α and β. If ϕ(0) = 0, for example, then line (1) shows that
‖Cϕ‖A2

α
= 1 for all α. A slightly less trivial class of examples are the maps ϕ(z) =

sz+ t, where s and t are complex numbers with |s|+ |t| ≤ 1. Combining results of
Cowen [5] and Hurst [14], we see that

‖Cϕ‖A2
α

=

(
2

1 + |s|2 − |t|2 +
√

(1− |s|2 + |t|2)2 − 4|t|2

)(α+2)/2

for any α ≥ −1. On the other hand, as noted in [4], there are cases where the
inequality in (5) is strict, at least for some choices of α and β. For example, if ϕ
is a non-univalent inner function that does not fix the origin, Theorem 3.3 in [4]
shows that ‖Cϕ‖A2

β
< ‖Cϕ‖β+2

H2 for all β > −1.

4. Open Questions

The major unanswered question, of course, is whether the conclusion of Theorem
4 still holds when the quantity γ is not an integer. In particular, one might wonder
whether Corollary 6 can be extended to odd values of β.

The proof of Theorem 4 cannot be automatically extended to non-integer
values of γ, since the Schur Product Theorem cannot be generalized to non-integer
entrywise powers. If A = [ai,j ]

n
i,j=1 is self-adjoint, the entrywise (or Hadamard)

power A◦,γ is defined by the rule A◦,γ =
[
aγi,j
]n
i,j=1

, where the arguments of the
entries of A are chosen consistently so that all of the matrix powers are self-adjoint.
It turns out that the condition A ≥ 0 does not imply that A◦,γ ≥ 0 for non-integer
values of γ. (If a matrix A does have the special property that A◦,γ ≥ 0 for all
γ ≥ 0, then A is called infinitely divisible. A necessary and sufficient condition
for this property is discussed in Section 6.3 of [13].) The proof of Theorem 4
essentially involves using the Schur Product Theorem to show that A ≥ B ≥ 0
implies A◦,k ≥ B◦,k whenever k is a positive integer. Little seems to be known,
however, about conditions on A and B which would guarantee that A ≥ B ≥ 0
implies A◦,γ ≥ B◦,γ for all γ ≥ 1. Such conditions could help determine to what
extent Theorem 4 can be generalized.

Taking a different point of view, one might try to “fill in the gaps” of Theorem
4 using some sort of interpolation argument (such as Theorem 1.1 in [15]). While
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such techniques initially appear promising, they generally involve working with
Hilbert spaces that have equivalent norms to the spaces in which we are interested.
Hence such an approach cannot be applied to any question that deals with the
precise value of an operator norm.

It might be helpful to recast this question in terms of the relationship between
the norm of a composition operator and the property of cosubnormality (that is,
the adjoint of the operator being subnormal). Based on the scant evidence we have
(see [2] and [3]), one might conjecture that, for any univalent ϕ with Denjoy–Wolff
point on ∂D, the norm of Cϕ equals its spectral radius on A2

α if and only if Cϕ
is cosubnormal on that space. If that conjecture were accurate, then Corollary 6
would not hold for odd values of β.

In particular, consider the maps of the form

ϕ(z) =
(r + s)z + 1− s
r(1− s)z + 1 + sr

(7)

for −1 ≤ r ≤ 1 and 0 < s < 1, a class introduced by Cowen and Kriete [7].
Richman [16] showed that Cϕ is cosubnormal on A2 precisely when −1/7 ≤ r ≤ 1.
On the other hand, he showed in [17] that Cϕ is cosubnormal on A2

1 if and only if
0 ≤ r ≤ 1. Take, for example,

ϕ(z) =
7

8− z
,

which corresponds to (7) with r = −1/7 and s = 1/7. We know that Cϕ is
cosubnormal on A2, which means that its norm on A2 is equal to its spectral
radius, which is ϕ′(1)−1 = 7. On the other hand, Cϕ is not cosubnormal on A2

1, so
it is possible that its norm on that space might exceed its spectral radius, which is
73/2. If that were the case, then Corollary 6 – and hence Theorem 4 – would not
be valid for intermediate spaces. We have attempted (in the spirit of [1]) to show
that ‖Cϕ‖A2

1
> 73/2 through a variety of numerical calculations, all of which have

been inconclusive.
The following result, a sort of “cousin” to our Theorem 4, may also be relevant

to the question at hand:

Theorem 7 (Cowen [6]). Take β ≥ α ≥ −1 and let ϕ be an analytic self-map of D.
Suppose that γ = (β + 2)/(α+ 2) is an integer. If Cϕ is cosubnormal on A2

α, then
it is also cosubnormal on A2

β.

Cowen only stated this result for α = −1, but an identical argument works
for α > −1. The proof makes use of the Schur Product Theorem in a similar
fashion to that of Theorem 4. Moreover, we know that the result does not hold
for intermediate spaces. For example,

ϕ(z) =
7

8− z
,

induces a cosubnormal composition operator on A2, and hence on A2
2, but not on

the space A2
1.
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