Norm Inequalities for Composition Operators on Hardy and Weighted Bergman Spaces

Christopher Hammond
Connecticut College

(joint work with Linda J. Patton)

July 24, 2008

Let
$$\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$$

The Hardy space H^2 consists of all analytic functions f on $\mathbb D$ such that

$$||f||_{H^2}^2 = \sup_{0 < r < 1} \int_0^{2\pi} |f(re^{i\theta})|^2 \frac{d\theta}{2\pi} < \infty.$$

For $\alpha > -1$, the weighted Bergman space A_{α}^2 consists of all analytic f on $\mathbb D$ such that

$$||f||_{A_{\alpha}^{2}}^{2} = \int_{\mathbb{D}} |f(z)|^{2} (\alpha + 1) (1 - |z|^{2})^{\alpha} dA(z) < \infty,$$

where dA signifies normalized area measure on \mathbb{D} .

All of these spaces are reproducing kernel Hilbert spaces.

For every point λ in $\mathbb D$ there is a unique K_λ in H^2 such that

$$\langle f, K_{\lambda} \rangle = f(\lambda)$$

for all f in H^2 .

It is not difficult to show that

$$K_{\lambda} = \frac{1}{1 - \overline{\lambda}z}.$$

Furthermore, the span of the kernel functions is dense in H^2 .

Likewise, for any $\alpha > -1$, one can show that

$$\langle f, K_{\lambda}^{\alpha} \rangle = f(\lambda)$$

for any f in A^2_{α} and λ in \mathbb{D} , where

$$K_{\lambda}^{\alpha}(z) = \frac{1}{(1 - \overline{\lambda}z)^{\alpha + 2}}.$$

For this reason, we shall refer to H^2 as A_{-1}^2 .

Let φ be an analytic map from $\mathbb D$ into itself.

We define the *composition operator* C_{φ} on H^2 by the rule

$$C_{\varphi}(f) = f \circ \varphi.$$

Every such operator is bounded on any space A_{α}^2 for $\alpha \geq -1$.

Moreover,

$$\left(\frac{1}{1-|\varphi(0)|^2}\right)^{\alpha+2} \le \|C_{\varphi}\|_{A_{\alpha}^2}^2 \le \left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{\alpha+2}$$

Question: Is there any relationship between the norm of C_{φ} on different spaces?

For instance, does
$$\|C_{\varphi}\|_{A_{\beta}^{2}}^{1/(\beta+2)} = \|C_{\varphi}\|_{A_{\alpha}^{2}}^{1/(\alpha+2)}$$
?

In particular, does $||C_{\varphi}||_{A^2}^{1/2} = ||C_{\varphi}||_{H^2}$?

Examples:

(1)
$$\varphi(0) = 0 \Rightarrow ||C_{\varphi}||_{A_{\alpha}^{2}} = 1.$$

(2)
$$\varphi(z) = sz + t \Rightarrow$$

$$\|C_{\varphi}\|_{A_{\alpha}^{2}} = \left(\frac{2}{1+|s|^{2}-|t|^{2}+\sqrt{(1-|s|^{2}+|t|^{2})^{2}-4|t|^{2}}}\right)^{(\alpha+2)/2}$$

Nevertheless, there are examples where such an equality does not hold.

Examples [Carswell, H 2006]:

The map

$$\varphi(z) = \frac{7}{8 - z}$$

has the property that $\|C_{\varphi}\|_{A^2}=7$, whereas $\|C_{\varphi}\|_{H^2}>\sqrt{7}$.

Likewise, for any non-univalent inner function φ with $\varphi(0) \neq 0$, one can demonstrate that $\|C_{\varphi}\|_{A^2}^{1/2} < \|C_{\varphi}\|_{H^2}$.

Our main result:

Theorem 1. Take $\beta \geq \alpha \geq -1$ and let φ be an analytic self-map of \mathbb{D} . Then

$$\|C_{\varphi}\|_{A_{\beta}^{2}} \leq \|C_{\varphi}\|_{A_{\alpha}^{2}}^{\gamma}$$

whenever the quantity $\gamma = (\beta + 2)/(\alpha + 2)$ is an integer.

Take $\alpha = -1$:

Corollary 2. Let φ be an analytic self-map of \mathbb{D} . Then

$$\left\| C_{\varphi} \right\|_{A_{\beta}^{2}} \le \left\| C_{\varphi} \right\|_{H^{2}}^{\beta + 2}$$

whenever β is a non-negative integer. In particular, $\|C_{\varphi}\|_{A^2} \leq \|C_{\varphi}\|_{H^2}^2$.

Take $\alpha = 0$:

Corollary 3. Let φ be an analytic self-map of \mathbb{D} . Then

$$\|C_{\varphi}\|_{A_{\beta}^{2}} \le \|C_{\varphi}\|_{A^{2}}^{(\beta+2)/2}$$

whenever β is a positive even integer.

Sketch of the proof of Theorem 1:

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be analytic. Let $\{\lambda_n\}_{n=1}^{\infty}$ be a fixed sequence of points in \mathbb{D} with a limit point in \mathbb{D} .

For a positive constant ν , a natural number n, and real number $\alpha \geq -1$, let $M(\nu, n, \alpha)$ be the $n \times n$ matrix

$$\left[\frac{\nu^2}{(1-\overline{\lambda_i}\lambda_j)^{\alpha+2}}-\frac{1}{(1-\overline{\varphi(\lambda_i)}\varphi(\lambda_j))^{\alpha+2}}\right]_{i,j=1}^n.$$

Recall that an $n \times n$ matrix A is called *positive* semidefinite if $\langle Ac, c \rangle \geq 0$ for all c in \mathbb{C}^n .

Proposition 4. Let φ be an analytic self-map of \mathbb{D} and ν be a positive constant. Then, for any $\alpha \geq -1$, the matrix $M(\nu, n, \alpha)$ is positive semidefinite for all natural numbers n if and only if $\|C\varphi\|_{A^2_\alpha} \leq \nu$.

Hence $M(\|C_{\varphi}\|_{A^{2}_{\alpha}}, n, \alpha)$ is positive semidefinite for all n.

Our goal is to show that $M(\|C_{\varphi}\|_{A_{\alpha}^{2}}^{\gamma}, n, \beta)$ is positive semidefinite for all n whenever $\gamma = (\beta + 2)/(\alpha + 2)$ is an integer.

For any two matrices $A = [a_{i,j}]$ and $B = [b_{i,j}]$, we define the Schur product $A \circ B = [a_{i,j}b_{i,j}]$.

Schur Product Theorem. If A and B are $n \times n$ positive semidefinite matrices, then their Schur product $A \circ B$ is also positive semidefinite.

We would like to write

$$M(\|C_{\varphi}\|_{A_{\alpha}^{2}}^{\gamma}, n, \beta) = M(\|C_{\varphi}\|_{A_{\alpha}^{2}}, n, \alpha) \circ N,$$
 where N is positive semidefinite.

Observe that

$$\frac{\|C\varphi\|_{A_{\alpha}^{2}}^{2\gamma}}{(1-\overline{\lambda_{i}}\lambda_{j})^{\beta+2}} - \frac{1}{(1-\overline{\varphi(\lambda_{i})}\varphi(\lambda_{j}))^{\beta+2}} =$$

$$\left(\frac{\|C\varphi\|_{A_{\alpha}^{2}}^{2}}{(1-\overline{\lambda_{i}}\lambda_{j})^{\alpha+2}} - \frac{1}{(1-\overline{\varphi(\lambda_{i})}\varphi(\lambda_{j}))^{\alpha+2}}\right)$$

$$\cdot \left(\sum_{k=0}^{\gamma-1} \frac{\|C\varphi\|_{A_{\alpha}^{2}}^{2k}}{(1-\overline{\lambda_{i}}\lambda_{j})^{(\alpha+2)k}(1-\overline{\varphi(\lambda_{i})}\varphi(\lambda_{j}))^{(\alpha+2)(\gamma-1-k)}}\right)$$

for all $1 \leq i, j \leq n$.

Question: Does Theorem 1 hold for values of α and β such that $\gamma = (\beta + 2)/(\alpha + 2)$ is not an integer?

For example, could there be some φ such that $\|C_\varphi\|_{A_1^2} > \|C_\varphi\|_{A_2^2}^{3/2}$?

At this point, the answer is unknown.

A related result:

Theorem [Cowen 1992]. Take $\beta \geq \alpha \geq -1$ and let $\varphi : \mathbb{D} \to \mathbb{D}$. Suppose $\gamma = (\beta+2)/(\alpha+2)$ is an integer. If C_{φ} is cosubnormal on A_{α}^2 , then it is also cosubnormal on A_{β}^2 .

This result does *not* hold for intermediate spaces. For example,

$$\varphi(z) = \frac{7}{8-z},$$

induces a cosubnormal composition operator on A^2 , and hence on A_2^2 , but not on A_1^2 .

The example

$$\varphi(z) = \frac{7}{8-z},$$

might provide an example where Theorem 1 fails for intermediate spaces.

We know that $||C_{\varphi}||_{A^2} = 7$ and $||C_{\varphi}||_{A^2_2} = 49$.

It is *possible* that $||C_{\varphi}||_{A_1^2} > 7^{3/2}$.