Zeros of Hypergeometric Functions and the Norm of a Composition Operator

Christopher Hammond
Connecticut College

October 7, 2005

Let H^2 denote the Hardy space on the disk $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}.$

Let $\varphi: \mathbb{D} \to \mathbb{D}$ be analytic. We define the composition operator C_{φ} on H^2 by the rule

$$C_{\varphi}(f) = f \circ \varphi.$$

Every such φ induces a bounded composition operator on H^2 .

Moreover, we know that

$$\frac{1}{1 - |\varphi(0)|^2} \le ||C_{\varphi}||^2 \le \frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}$$

for any $\varphi:\mathbb{D}\to\mathbb{D}$.

If $\varphi(0) = 0$, then $||C_{\varphi}|| = 1$. Otherwise, it is difficult to determine $||C_{\varphi}||$ explicitly.

One common strategy for determining $\|C_{\varphi}\|$ is to study the spectrum of $C_{\varphi}^*C_{\varphi}$.

Justification:

Let T be a bounded operator on a Hilbert space \mathcal{H} . We know that:

• The spectral radius of T^*T equals $||T^*T|| = ||T||^2$.

• Let $h \in \mathcal{H}$; then ||T(h)|| = ||T|| ||h|| if and only if $(T^*T)(h) = ||T||^2 h$.

• If $\|T\|_e < \|T\|$, then T is norm-attaining.

Let

$$\varphi(z) = \frac{az+b}{cz+d}$$

be a self-map of \mathbb{D} , with $ad - bc \neq 0$. Then

$$\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}.$$

is also a self-map of \mathbb{D} .

Cowen [1988] showed that $C_{\varphi}^* = T_{\gamma} C_{\sigma} T_{\eta}^*$, where

$$\gamma(z) = \frac{1}{-\overline{b}z + \overline{d}}$$
 and $\eta(z) = cz + d$.

Cowen's adjoint formula shows that

$$\left(C_{\varphi}^*C_{\varphi}f\right)(z) = \psi(z)f(\tau(z)) + \chi(z)f(\varphi(0)),$$

where

$$\tau(z) = \varphi(\sigma(z)),$$

$$\psi(z) = \frac{(\overline{a}\overline{d} - \overline{b}\overline{c})z}{(\overline{a}z - \overline{c})(-\overline{b}z + \overline{d})}, \text{ and}$$

$$\chi(z) = \frac{\overline{c}}{-\overline{a}z + \overline{c}}.$$

This representation holds for all for z except for $\sigma^{-1}(0) = \overline{c}/\overline{a}$.

Using this representation, it is possible to obtain some results about $||C_{\varphi}||$:

Theorem 1. (Bourdon, Fry, H, Spofford [2004])

Let $\varphi: \mathbb{D} \to \mathbb{D}$ be a non-automorphic linear fractional map that fixes the point 1. If λ is an eigenvalue of $C_{\varphi}^*C_{\varphi}$ with $\lambda > \|C_{\varphi}\|_e^2$, then λ is a solution to the equation

$$\sum_{k=0}^{\infty} \chi(\tau^{[k]}(\varphi(0))) \left[\prod_{m=0}^{k-1} \psi(\tau^{[m]}(\varphi(0))) \right] \left(\frac{1}{\lambda} \right)^{k+1} = 1.$$

Conversely, any complex number $|\lambda| > ||C_{\varphi}||_e^2$ that is a solution to this equation is an eigenvalue for $C_{\varphi}^* C_{\varphi}$.

For a, b, and c in \mathbb{C} , we define the *hypergeometric series*

$$_{2}F_{1}(a,b;c;z) := \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}k!} z^{k},$$

where $(\cdot)_k$ denotes *Pochhammer's symbol*:

$$(\zeta)_k := \begin{cases} 1, & k = 0 \\ \zeta(\zeta+1)\dots(\zeta+k-1), & k = 1, 2, 3, \dots \end{cases}$$

Any non-automorphic linear fractional map $\varphi:\mathbb{D}\to\mathbb{D}$ that fixes 1 can be written

$$\varphi(z) = \frac{(\overline{\beta} - 1)z + \alpha + 1}{\overline{\alpha}z + \beta},$$

where $\overline{\alpha} + \beta > 0$ and $\beta - \alpha - 1 > 0$.

Basor and Retsek [2005] showed that

$$\sum_{k=0}^{\infty} \chi(\tau^{[k]}(\varphi(0))) \left[\prod_{m=0}^{k-1} \psi(\tau^{[m]}(\varphi(0))) \right] z^{k+1}$$

equals $1 - {}_2F_1(\alpha, \beta; \delta; z/q)$, where

$$\delta = \overline{\alpha} + \beta$$
 and $q = \varphi'(1) = \frac{\beta - \alpha - 1}{\overline{\alpha} + \beta}$.

In other words, $\lambda > 1/q = \|C_{\varphi}\|_{e}^{2}$ is an eigenvalue for $C_{\varphi}^{*}C_{\varphi}$ if and only if $(q\lambda)^{-1} = \|C_{\varphi}\|_{e}^{2} \lambda^{-1}$ in (0,1) is a zero of ${}_{2}F_{1}(\alpha,\beta;\delta;z)$.

Basor and Retsek showed that $C_{\varphi}^*C_{\varphi}$ has at least one such eigenvalue, except in the case where α is real and positive.

Question: How many eigenvalues does $C_{\varphi}^* C_{\varphi}$ have that are greater than $\|C_{\varphi}\|_e^2$?

Van Vleck [1902] determined the number of zeros of $_2F_1(a,b;c;z)$ when a, b, and c are real. For example, if c>1 the series has

$$E\left(\frac{|a-b|-|1-c|-|c-a-b|+1}{2}\right)$$

zeros in (0,1).

Here $E(\cdot)$ denotes *Klein's symbol*:

$$E(u) := \begin{cases} 0, & u \leq 0 \\ \lfloor u \rfloor, & u > 0, u \text{ not an integer} \\ u - 1, & u = 1, 2, 3, \dots \end{cases}$$

Using Van Vleck's results, we can show that ${}_2F_1(\alpha,\beta;\delta;z)$ has $E(-\alpha+1)$ zeros in (0,1) when α is real.

In other words, we have obtained the following result:

Proposition 2. Let α and β be real, with $\alpha + \beta > 0$ and $\beta - \alpha - 1 > 0$; consider the map

$$\varphi(z) = \frac{(\beta - 1)z + \alpha + 1}{\alpha z + \beta}.$$

The operator $C_{\varphi}^*C_{\varphi}$ has exactly $E(-\alpha+1)$ eigenvalues greater than $\|C_{\varphi}\|_e^2$.

This result has an interesting geometric interpretation. Note that the point $\tau(0) = \varphi(\sigma(0))$ is the center of the disk $\varphi(\mathbb{D})$.

Corollary 3. Consider the map

$$\varphi(z) = \frac{(\beta - 1)z + \alpha + 1}{\alpha z + \beta}.$$

The operator $C_{\varphi}^*C_{\varphi}$ has exactly m eigenvalues greater than $\|C_{\varphi}\|_e^2$, where m is the smallest non-negative integer such that $\tau^{[m]}(\varphi(0)) \geq \tau(0)$.

Example:
$$\varphi(z) = \frac{13z - 11}{-19z + 21}$$
.

(Note that
$$\alpha = -19/8$$
, so $E(-\alpha + 1) = 3$.)

It is not difficult to determine the spectrum of $C_{\varphi}^* C_{\varphi}$ entirely:

Theorem 4. Consider the map

$$\varphi(z) = \frac{(\beta - 1)z + \alpha + 1}{\alpha z + \beta}.$$

The spectrum of the operator $C_{\varphi}^*C_{\varphi}$ is precisely

$$\left[0,\|C_{\varphi}\|_{e}^{2}\right]\cup\{\lambda_{k}\}_{k=1}^{m}$$
 ,

where $m = E(-\alpha + 1)$ and $\lambda_1, \lambda_2, \dots, \lambda_m$ are distinct eigenvalues greater than $||C_{\varphi}||_e^2$.

Theorem 5. Let α and β be complex numbers, with $\delta = \overline{\alpha} + \beta > 0$ and $\beta - \alpha - 1 > 0$. All of the zeros of the hypergeometric series ${}_2F_1(\alpha,\beta;\delta;z)$ within $\mathbb D$ must lie on the positive real axis. Moreover, the smallest such zero must be greater than or equal to

$$\frac{(\overline{\alpha}+\beta)(|\beta|-|\alpha+1|)}{(\beta-\alpha-1)(|\beta|+|\alpha+1|)}$$

and less than or equal to

$$\frac{(\overline{\alpha}+\beta)(|\beta|^2-|\alpha+1|^2)}{(\beta-\alpha-1)|\beta|^2}.$$