Composition Operators on Spaces of Analytic Functions

Christopher Hammond
Connecticut College

April 4, 2007

Two old problems in Analysis:

Let $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ and let φ be an analytic map that takes \mathbb{D} into itself.

First Problem: Describe the function-theoretic properties of such maps.

Denjoy-Wolff Theorem [1926]

Suppose φ is not the identity and not an elliptic automorphism. Then φ has a unique fixed point w in $\overline{\mathbb{D}}$ such that the iterates $\varphi^{[n]}$ converge to w uniformly on compact subsets of \mathbb{D} .

Second problem: Understand and describe the bounded operators on a Hilbert space (in other words, the continuous linear transformations on a complete inner product space).

One way to attack this problem is to study the behavior of certain classes of operators.

For example, let $\{e_n\}$ be an orthonormal basis for a Hilbert space \mathcal{H} . We could define an operator $T: \mathcal{H} \to \mathcal{H}$ in terms of this basis.

We could consider a diagonal operator:

$$T(e_n) = \alpha_n e_n,$$

where $\sup |\alpha_n| < \infty$.

We could also consider a weighted shift:

$$T(e_n) = \alpha_n e_{n+1},$$

where $\sup |\alpha_n| < \infty$.

We could also consider operators $T:\mathcal{H}\to\mathcal{H}$ with certain symmetry properties.

Recall that the adjoint T^* is the (unique) bounded operator on $\mathcal H$ such that

$$\langle T(h), k \rangle = \langle h, T^*(k) \rangle$$

for all h and k in \mathcal{H} .

An operator $T: \mathcal{H} \to \mathcal{H}$ is self-adjoint (or Hermitian) if $T^* = T$.

An operator $T: \mathcal{H} \to \mathcal{H}$ is *normal* if $T^*T = TT^*$.

Another symmetry property.

Let $C: \mathcal{H} \to \mathcal{H}$ be an antilinear involutive isometry; that is:

- C(h+k) = C(h) + C(k) for h and k in \mathcal{H} ,
- $C(\alpha h) = \overline{\alpha}C(h)$ for h in \mathcal{H} and α in \mathbb{C} ,
- C(C(h)) = h for all h in \mathcal{H} ,
- $\langle h, k \rangle = \langle C(k), C(h) \rangle$ for h and k in \mathcal{H} .

We say an operator $T: \mathcal{H} \to \mathcal{H}$ is *complex* symmetric if $CT = T^*C$ for some such C.

Let us consider a particular Hilbert space.

The Hardy space H^2 consists of all analytic functions $f(z) = \sum a_n z^n$ on \mathbb{D} such that

$$||f|| := \sqrt{\sum_{n=0}^{\infty} |a_n|^2} < \infty.$$

The inner product of two functions $f(z) = \sum a_n z^n$ and $g(z) = \sum b_n z^n$ is defined

$$\langle f, g \rangle := \sum_{n=0}^{\infty} a_n \overline{b_n}$$

$$= \lim_{r \uparrow 1} \int_0^{2\pi} f(re^{i\theta}) \overline{g(re^{i\theta})} \frac{d\theta}{2\pi}$$

Note that the monomials $\{z^n\}$ constitute an orthonormal basis for H^2 .

The linear transformation

$$(T(f))(z) = zf(z)$$

is simply the shift operator with respect to this basis.

An important class of functions in H^2 : the reproducing kernel functions.

For any w in \mathbb{D} , define

$$K_w(z) = \frac{1}{1 - \overline{w}z} = \sum_{n=0}^{\infty} \overline{w}^n z^n.$$

Let $f = \sum a_n z^n$ be an arbitrary function in H^2 . Note that

$$\langle f, K_w \rangle = \sum_{n=0}^{\infty} a_n \overline{\overline{w}^n} = \sum_{n=0}^{\infty} a_n w^n = f(w).$$

Note that the span of all kernel functions is dense in H^2 .

Let φ be an analytic map from $\mathbb D$ into $\mathbb D$. We define the composition operator C_{φ} on H^2 by the rule

$$C_{\varphi}(f) = f \circ \varphi.$$

Some natural questions:

- Is C_{φ} bounded on H^2 ?
- What is the spectrum of C_{φ} ?
- What is the adjoint of C_{φ} ?
- What is $\|C_{\varphi}\|$?

How do the answers to these questions relate to the function-theoretic properties of φ ?

Boundedness

The Littlewood Subordination Theorem [1925] shows that C_{φ} is bounded on H^2 . Furthermore,

$$\frac{1}{1-|\varphi(0)|^2} \le ||C_{\varphi}||^2 \le \frac{1+|\varphi(0)|}{1-|\varphi(0)|}.$$

These bounds are sharp. There are certain φ (constant maps) where the norm equals the lower bound and others (inner functions) where the norm equals the upper bound.

Spectral Radius

Recall that the *spectrum* of $T: \mathcal{H} \to \mathcal{H}$ is defined as follows:

$$\sigma(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not invertible} \}.$$

We write r(T) to denote the *spectral radius* of T:

$$r(T) := \max\{|\lambda| : \lambda \in \sigma(T)\}.$$

For any operator $T: \mathcal{H} \to \mathcal{H}$, we know that

$$r(T) = \lim_{n \to \infty} ||T^n||^{1/n}.$$

We have enough information to calculate the spectral radius of $C_{\varphi}: H^2 \to H^2$.

Observe that $(C_{\varphi})^n = C_{\varphi}[n]$. Therefore

$$\left(\frac{1}{1-|\varphi^{[n]}(0)|^2}\right)^{1/2n} \leq \|(C_{\varphi})^n\|^{1/n}
\leq \left(\frac{1+|\varphi^{[n]}(0)|}{1-|\varphi^{[n]}(0)|}\right)^{1/2n} .$$

If the Denjoy-Wolff point w of φ lies inside \mathbb{D} , then we see that $r(C_{\varphi}) = 1$. If w lies on $\partial \mathbb{D}$, then $r(C_{\varphi}) = \varphi'(w)^{-1/2}$.

(If φ is an elliptic automorphism, $r(C_{\varphi}) = 1$.)

Adjoints

Can we find a concrete representation for C_{φ}^* ?

A helpful observation:

$$\langle f, C_{\varphi}^{*}(K_{w}) \rangle = \langle C_{\varphi}(f), K_{w} \rangle$$

$$= \langle f \circ \varphi, K_{w} \rangle$$

$$= f(\varphi(w))$$

$$= \langle f, K_{\varphi(w)} \rangle$$

for all f in H^2 , so $C^*_{\varphi}(K_w) = K_{\varphi(w)}$.

This fact allows us to compute C_{φ}^* when φ is linear fractional.

Theorem 1. [Cowen 1988]

Suppose $\varphi:\mathbb{D}\to\mathbb{D}$ has the form

$$\varphi(z) = \frac{az+b}{cz+d},$$

where $ad - bc \neq 0$. Then $C_{\varphi}^*(f)$ is given by the formula

$$\gamma(z)\left(\overline{c}\left(\frac{f(\sigma(z))-f(0)}{\sigma(z)}\right)+\overline{d}f(\sigma(z))\right),$$

where

$$\gamma(z) = \frac{1}{-\bar{b}z + \bar{d}}$$

and

$$\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}.$$

Proof. Consider the reproducing kernel function $K_w(z) = \frac{1}{1 - \overline{w}z}$. Observe that

$$\gamma(z) \left(\overline{c} \left(\frac{K_w(\sigma(z)) - K_w(0)}{\sigma(z)} \right) + \overline{d} K_w(\sigma(z)) \right)$$

$$= \gamma(z) \left(\frac{\overline{cw} + \overline{d}}{1 - \overline{w}\sigma(z)} \right)$$

$$= \left(\frac{1}{-\overline{b}z + \overline{d}} \right) \left(\frac{\overline{cw} + \overline{d}}{1 - \overline{w} \left(\frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}} \right)} \right)$$

$$= \frac{\overline{cw} + \overline{d}}{-\overline{b}z + \overline{d} - \overline{w}\overline{a}z + \overline{w}\overline{c}}$$

$$= \frac{1}{1 - \overline{(aw + b)}z}$$

$$= \frac{1}{1 - \overline{\varphi(w)}z} = K_{\varphi(w)}(z) = (C_{\varphi}^*(K_w))(z).$$

Cowen's formula can be rewritten

$$(C_{\varphi}^{*}(f))(z) = \frac{(\overline{ad} - \overline{bc})z}{(\overline{az} - \overline{c})(-\overline{bz} + \overline{d})} f(\sigma(z)) + \frac{\overline{c}f(0)}{\overline{c} - \overline{az}}$$
$$= \frac{z\sigma'(z)}{\sigma(z)} f(\sigma(z)) + \frac{f(0)}{1 - (\overline{a}/\overline{c})z}.$$

A brand new result:

Theorem 2. [H, Moorhouse, Robbins 2007]

Suppose that φ is a rational map that takes $\mathbb D$ into itself. Then

$$(C_{\varphi}^*(f))(z) = \sum \psi(z)f(\sigma(z)) + \frac{f(0)}{1 - \overline{\varphi(\infty)}z},$$

where

$$\sigma(z) = 1/\overline{\varphi^{-1}(1/\overline{z})},$$
 $\psi(z) = \frac{z\sigma'(z)}{\sigma(z)},$
 $\varphi(\infty) = \lim_{|z| \to \infty} \varphi(z),$

and the summation is taken over all branches of σ .

Examples

(1) Let $\varphi(z) = z^2$. Then

$$(C_{\varphi}^{*}(f))(z) = \frac{f(\sqrt{z}) + f(-\sqrt{z})}{2}.$$

(2) Let

$$\varphi(z) = \frac{z^2 - 6z + 9}{z^2 - 10z + 13}.$$

Then $(C_{\varphi}^*(f))(z)$ equals

$$\sum_{j=1}^{2} \frac{(-1)^{j} 2z}{\sqrt{3-2z}(3z-4+(-1)^{j}\sqrt{3-2z})}$$

$$f\left(\frac{3z-5+(-1)^{j} 2\sqrt{3-2z}}{9z-13}\right) + \frac{f(0)}{1-z}.$$

Norms

Can we calculate $\|C_{\varphi}\|$ exactly?

For any operator $T: \mathcal{H} \to \mathcal{H}$, we know that

$$r(T^*T) = ||T^*T|| = ||T||^2.$$

We can learn about $||C_{\varphi}||$ by studying the spectrum (particularly the eigenvalues) of $C_{\varphi}^*C_{\varphi}$.

A helpful observation:

Suppose f is an eigenvector for $C_{\varphi}^*C_{\varphi}$ corresponding to an eigenvalue λ . Then

$$f(\varphi(0)) = \langle f \circ \varphi, K_0 \rangle$$

$$= \langle C_{\varphi}(f), K_0 \rangle$$

$$= \langle C_{\varphi}(f), C_{\varphi}(K_0) \rangle$$

$$= \langle C_{\varphi}^* C_{\varphi}(f), K_0 \rangle$$

$$= \langle \lambda f, K_0 \rangle$$

$$= \lambda f(0).$$

Example [H 2003]

Let
$$\varphi(z) = \frac{16z + 8}{19z + 32}$$
.

Cowen's adjoint formula for linear fractional maps shows that $(C_{\varphi}^*C_{\varphi}(f))(z)$ equals

$$\frac{45z}{(16z-19)(4-z)}f\left(\frac{64z-16}{16z+221}\right)+\frac{19}{19-16z}f(\varphi(0)).$$

If f is an eigenvector for $C_{\varphi}^* C_{\varphi}$ corresponding to $\lambda = \|C_{\varphi}\|^2$, we see that

$$\lambda f(\varphi(0)) = -\frac{1}{5}f(0) + \frac{19}{15}f(\varphi(0))$$

$$\lambda^2 f(0) = -\frac{1}{5}f(0) + \frac{19}{15}\lambda f(0).$$

Hence
$$\lambda = ||C_{\varphi}||^2 = \frac{19 + \sqrt{181}}{30}$$
.

In general, it is possible to determine $||C_{\varphi}||$ when φ is linear fractional, at least in the case where $\varphi(1) = 1$.

Theorem 3. [Basor, Retsek 2006] Suppose

$$\varphi(z) = \frac{(\overline{\beta} - 1)z + \alpha + 1}{\overline{\alpha}z + \beta}$$

takes \mathbb{D} into itself. Then $1/\|C_{\varphi}\|^2$ is the smallest zero of the hypergeometric function $_2F_1(\alpha,\beta;\delta;z/q)$, where

$$\delta = \overline{\alpha} + \beta$$
 and $q = \varphi'(1) = \frac{\beta - \alpha - 1}{\overline{\alpha} + \beta}$.

This result builds on [H 2003] and [Bourdon, Fry, H, Spofford 2004], and is studied further in [H 2006].

Some open questions:

- Can one find $\|C_{\varphi}\|$ when $\varphi: \mathbb{D} \to \mathbb{D}$ is a rational function?
- ullet What can one say about $\|C_{\varphi}\|$ on other spaces?

Progress has been made recently by [Effinger-Dean, Johnson, Reed, Shapiro 2006] and by Patton [2007]. It might also be possible to use the new adjoint formula.

Component Structure

Let us consider $C(H^2)$, the set of all composition operators, as a subset of $\mathcal{B}(H^2)$. What can we say about its component structure?

Theorem 4. [Shapiro, Sundberg 1990] (based on [Berkson 1981])

Let φ and ψ be distinct analytic self-maps of \mathbb{D} . Then

$$||C_{\varphi} - C_{\psi}||^2 \ge |E(\varphi)| + |E(\psi)|,$$

where $E(\varphi) = \{ \zeta \in \partial \mathbb{D} : |\varphi(\zeta)| = 1 \}$.

Corollary 5. If $|E(\varphi)| > 0$, then C_{φ} is isolated in $C(H^2)$.

On the other hand, all the operators C_{φ} with $E(\varphi) = \emptyset$ belong to the same component of $\mathcal{C}(H^2)$.

Determining the exact component structure of $\mathcal{C}(H^2)$ is somewhat tricky.

Conjecture 6. [Shapiro, Sundberg]

The operators C_{φ} and C_{ψ} belong to the same component of $\mathcal{C}(H^2)$ if and only if $C_{\varphi} - C_{\psi}$ is compact.

[Bourdon 2003] and [Moorhouse, Toews 2003] provide examples where C_{φ} and C_{ψ} belong to the same component of $\mathcal{C}(H^2)$, yet their difference is not compact.