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Two old problems in Analysis:

Let D = {z ∈ C : |z| < 1} and let ϕ be an

analytic map that takes D into itself.

First Problem: Describe the function-theoretic

properties of such maps.

Denjoy–Wolff Theorem [1926]

Suppose ϕ is not the identity and not an ellip-

tic automorphism. Then ϕ has a unique fixed

point w in D such that the iterates ϕ[n] con-

verge to w uniformly on compact subsets of D.
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Second problem: Understand and describe the

bounded operators on a Hilbert space (in other

words, the continuous linear transformations

on a complete inner product space).

One way to attack this problem is to study the

behavior of certain classes of operators.
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For example, let {en} be an orthonormal basis

for a Hilbert space H. We could define an

operator T : H → H in terms of this basis.

We could consider a diagonal operator :

T (en) = αnen,

where sup |αn| < ∞.

We could also consider a weighted shift:

T (en) = αnen+1,

where sup |αn| < ∞.
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We could also consider operators T : H → H
with certain symmetry properties.

Recall that the adjoint T ∗ is the (unique) bounded

operator on H such that

〈T (h), k〉 = 〈h, T ∗(k)〉
for all h and k in H.

An operator T : H → H is self-adjoint (or Her-

mitian) if T ∗ = T .

An operator T : H → H is normal if T ∗T = TT ∗.
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Another symmetry property.

Let C : H → H be an antilinear involutive isom-

etry; that is:

• C(h + k) = C(h) + C(k) for h and k in H,

• C(αh) = αC(h) for h in H and α in C,

• C(C(h)) = h for all h in H,

• 〈h, k〉 = 〈C(k), C(h)〉 for h and k in H.

We say an operator T : H → H is complex

symmetric if CT = T ∗C for some such C.
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Let us consider a particular Hilbert space.

The Hardy space H2 consists of all analytic

functions f(z) =
∑

anzn on D such that

‖f‖ :=

√√√√
∞∑

n=0

|an|2 < ∞.

The inner product of two functions f(z) =∑
anzn and g(z) =

∑
bnzn is defined

〈f, g〉 :=
∞∑

n=0

anbn

=lim
r↑1

∫ 2π

0
f

(
reiθ

)
g
(
reiθ

) dθ

2π
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Note that the monomials {zn} constitute an

orthonormal basis for H2.

The linear transformation

(T (f))(z) = zf(z)

is simply the shift operator with respect to this

basis.
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An important class of functions in H2: the

reproducing kernel functions.

For any w in D, define

Kw(z) =
1

1− wz
=

∞∑

n=0

wnzn.

Let f =
∑

anzn be an arbitrary function in H2.

Note that

〈f, Kw〉 =
∞∑

n=0

anwn =
∞∑

n=0

anwn = f(w).

Note that the span of all kernel functions is

dense in H2.
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Let ϕ be an analytic map from D into D. We

define the composition operator Cϕ on H2 by

the rule

Cϕ(f) = f ◦ ϕ.

Some natural questions:

• Is Cϕ bounded on H2?

• What is the spectrum of Cϕ?

• What is the adjoint of Cϕ?

• What is ‖Cϕ‖?

How do the answers to these questions relate

to the function-theoretic properties of ϕ?
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Boundedness

The Littlewood Subordination Theorem [1925]

shows that Cϕ is bounded on H2. Furthermore,

1

1− |ϕ(0)|2 ≤ ‖Cϕ‖2 ≤ 1 + |ϕ(0)|
1− |ϕ(0)| .

These bounds are sharp. There are certain

ϕ (constant maps) where the norm equals the

lower bound and others (inner functions) where

the norm equals the upper bound.
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Spectral Radius

Recall that the spectrum of T : H → H is de-

fined as follows:

σ(T ) := {λ ∈ C : λI − T is not invertible}.

We write r(T ) to denote the spectral radius

of T :

r(T ) := max{|λ| : λ ∈ σ(T )}.

For any operator T : H → H, we know that

r(T ) = lim
n→∞ ‖T

n‖1/n.
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We have enough information to calculate the

spectral radius of Cϕ : H2 → H2.

Observe that (Cϕ)n = C
ϕ[n]. Therefore

(
1

1− |ϕ[n](0)|2
)1/2n

≤ ‖(Cϕ)n‖1/n

≤

1 + |ϕ[n](0)|

1− |ϕ[n](0)|




1/2n

.

If the Denjoy–Wolff point w of ϕ lies inside D,

then we see that r(Cϕ) = 1. If w lies on ∂D,

then r(Cϕ) = ϕ′(w)−1/2.

(If ϕ is an elliptic automorphism, r(Cϕ) = 1.)
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Adjoints

Can we find a concrete representation for C∗ϕ?

A helpful observation:

〈f, C∗ϕ(Kw)〉 = 〈Cϕ(f), Kw〉
= 〈f ◦ ϕ, Kw〉
= f(ϕ(w))

= 〈f, Kϕ(w)〉
for all f in H2, so C∗ϕ(Kw) = Kϕ(w).
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This fact allows us to compute C∗ϕ when ϕ is

linear fractional.

Theorem 1. [Cowen 1988]

Suppose ϕ : D→ D has the form

ϕ(z) =
az + b

cz + d
,

where ad− bc 6= 0. Then C∗ϕ(f) is given by the

formula

γ(z)

(
c

(
f(σ(z))− f(0)

σ(z)

)
+ df(σ(z))

)
,

where

γ(z) =
1

−bz + d

and

σ(z) =
az − c

−bz + d
.
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Proof. Consider the reproducing kernel func-

tion Kw(z) = 1
1−wz. Observe that

γ(z)

(
c

(
Kw(σ(z))−Kw(0)

σ(z)

)
+ dKw(σ(z))

)

= γ(z)

(
cw + d

1− wσ(z)

)

=
(

1

−bz + d

)



cw + d

1− w

(
az−c
−bz+d

)




=
cw + d

−bz + d− waz + wc

=
1

1−
(

aw+b
cw+d

)
z

=
1

1− ϕ(w)z
= Kϕ(w)(z) = (C∗ϕ(Kw))(z).

15



Cowen’s formula can be rewritten

(C∗ϕ(f))(z) =
(ad− bc)z

(az − c)(−bz + d)
f(σ(z)) +

cf(0)

c− az

=
zσ′(z)
σ(z)

f(σ(z)) +
f(0)

1− (a/c)z
.
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A brand new result:

Theorem 2. [H, Moorhouse, Robbins 2007]

Suppose that ϕ is a rational map that takes D
into itself. Then

(C∗ϕ(f))(z) =
∑

ψ(z)f(σ(z)) +
f(0)

1− ϕ(∞)z
,

where

σ(z) = 1/ϕ−1(1/z),

ψ(z) =
zσ′(z)
σ(z)

,

ϕ(∞) = lim
|z|→∞

ϕ(z),

and the summation is taken over all branches

of σ.
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Examples

(1) Let ϕ(z) = z2. Then

(C∗ϕ(f))(z) =
f(
√

z) + f(−√z)

2
.

(2) Let

ϕ(z) =
z2 − 6z + 9

z2 − 10z + 13
.

Then (C∗ϕ(f))(z) equals

2∑

j=1

(−1)j 2z√
3− 2z(3z − 4 + (−1)j

√
3− 2z)

·

f

(
3z − 5 + (−1)j 2

√
3− 2z

9z − 13

)
+

f(0)

1− z
.
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Norms

Can we calculate ‖Cϕ‖ exactly?

For any operator T : H → H, we know that

r(T ∗T ) = ‖T ∗T‖ = ‖T‖2.

We can learn about ‖Cϕ‖ by studying the spec-

trum (particularly the eigenvalues) of C∗ϕCϕ.
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A helpful observation:

Suppose f is an eigenvector for C∗ϕCϕ corre-

sponding to an eigenvalue λ. Then

f(ϕ(0)) = 〈f ◦ ϕ, K0〉
= 〈Cϕ(f), K0〉
= 〈Cϕ(f), Cϕ(K0)〉
= 〈C∗ϕCϕ(f), K0〉
= 〈λf, K0〉
= λf(0).
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Example [H 2003]

Let ϕ(z) =
16z + 8

19z + 32
.

Cowen’s adjoint formula for linear fractional

maps shows that (C∗ϕCϕ(f))(z) equals

45z

(16z − 19)(4− z)
f

(
64z − 16

16z + 221

)
+

19

19− 16z
f(ϕ(0)).

If f is an eigenvector for C∗ϕCϕ corresponding

to λ = ‖Cϕ‖2, we see that

λf(ϕ(0)) = −1

5
f(0) +

19

15
f(ϕ(0))

λ2f(0) = −1

5
f(0) +

19

15
λf(0).

Hence λ = ‖Cϕ‖2 =
19 +

√
181

30
.
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In general, it is possible to determine ‖Cϕ‖
when ϕ is linear fractional, at least in the case

where ϕ(1) = 1.

Theorem 3. [Basor, Retsek 2006]

Suppose

ϕ(z) =
(β − 1)z + α + 1

αz + β

takes D into itself. Then 1/‖Cϕ‖2 is the small-

est zero of the hypergeometric function

2F1(α, β; δ; z/q), where

δ = α + β and q = ϕ′(1) =
β − α− 1

α + β
.

This result builds on [H 2003] and [Bourdon,

Fry, H, Spofford 2004], and is studied further

in [H 2006].
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Some open questions:

• Can one find ‖Cϕ‖ when ϕ : D → D is a

rational function?

• What can one say about ‖Cϕ‖ on other

spaces?

Progress has been made recently by [Effinger-

Dean, Johnson, Reed, Shapiro 2006] and by

Patton [2007]. It might also be possible to

use the new adjoint formula.
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Component Structure

Let us consider C(H2), the set of all compo-

sition operators, as a subset of B(H2). What

can we say about its component structure?

Theorem 4. [Shapiro, Sundberg 1990]

(based on [Berkson 1981])

Let ϕ and ψ be distinct analytic self-maps of

D. Then

‖Cϕ − Cψ‖2 ≥ |E(ϕ)|+ |E(ψ)|,
where E(ϕ) = {ζ ∈ ∂D : |ϕ(ζ)| = 1}.

Corollary 5. If |E(ϕ)| > 0, then Cϕ is isolated

in C(H2).

On the other hand, all the operators Cϕ with

E(ϕ) = ∅ belong to the same component of

C(H2).
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Determining the exact component structure of

C(H2) is somewhat tricky.

Conjecture 6. [Shapiro, Sundberg]

The operators Cϕ and Cψ belong to the same

component of C(H2) if and only if Cϕ − Cψ is

compact.

[Bourdon 2003] and [Moorhouse, Toews 2003]

provide examples where Cϕ and Cψ belong to

the same component of C(H2), yet their dif-

ference is not compact.

25


