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Let D={z€C: |z] < 1}.

The Hardy space H? is the Hilbert sSpace con-
sisting of all analytic functions f(z) = > anz™
on D such that

— 2
1fllo:=] >_ lan|® < oo,
n=0

with
@)
(f,g) = ) anbn
n=0
o7 N ———db
— | 0
— |T|Trr11 A f(rez )g(rew)g
_ /271‘ Z@ 629) db
2T

=5 f(C)g(C)



Recall that H? is a reproducing kernel Hilbert
space. That is, for any w in D, there is a
function K, in H? such that

(fs Kw) = f(w)
for all f in H2.

It is easy to show that
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Kuy(z) =

Note that the span of the kernel functions is
dense in HZ.



Let © be an analytic map from D into itself.

We define the composition operator Cy, on H?
by the rule

Co(f) = fop.

Every such operator is bounded on the Hardy
space.



We would like to find a concrete representation
for the adjoint C;;.

A helpful observation:

(f, Co(Kw)) = (Co(f), Kw)
= (f oy, Ku)
= f(p(w))
= {f, Kp(w))

for all f in H?, so Ci(Kuw) = K ()



Another useful observation:

Note that
(Cof)(w) =(CL(f), Kuw)
= (f, Cp(Kuw))
= (f,Kwo 90>
or  f(e?)  ap
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for all w in D.



Either of these facts can be used to compute
C;; when ¢ is linear fractional.

Theorem 1. [Cowen 1988]
Suppose ¢ : D — D has the form

(2) az + b
Z) = ,
r cz + d
where ad — bc = 0. Then
C;; — TfyCO'T*,
where
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n(z) = cz 4+ d.



Proof. Consider the reproducing kernel func-

tion Ky (z) = ;—=. Observe that

(TyCoTy (Kw))(2) = n(w)y(2) Kuw(o(2))
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= K () (2) = (C5(Kw))(2).



Cowen’'s formula can be rewritten

. B (ad — bc)z cf(0)
(Cef)(z) = (az —¢)(—bz + d)f( 7D c—az
_ 20'(2) £(0)
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We would like to generalize this result so that
it applies to all rational maps.



Examples of rational ¢ where we know C7:

(1) If o(2) = 22, then

f(Wz) + F(=v>2)
5 .

(Cof)(z) =

A similar formula holds for p(z) = z™.
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2) [Bourdon 2002]| Let = .
() [ JLet w(x) = 53— 73

Then

(Cof)(z) = g(Z)f(
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To find a general formula, we will employ tech-

niques developed by Cowen and Gallardo-
Gutiérrez.

For any (possibly multiple-valued) analytic func-
tion g, define

3()=9(2).

Z
Note that g and g agree on 9.

Define o(z) = 1/g;—v1(z).
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Theorem 2. [H, Moorhouse, Robbins 2007]
Suppose that ¢ is a rational map that takes D
into itself. Then

(Cof)(2) =) v(2)f(o(2)) +

where

f(0)
1 —o(0)z

o(2) = 1/¢~1(2),

_ zo'(z2)
Y(z) = o(2)
p(c0) = |Z||iLnooso(Z),

and the summation is taken over all branches
of o.

Our proof is divided into three cases:
[p(00)| > 1, [p(c0)| < 1, and |p(c0)| = 1.
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Lemma 3. [Cowen and Gallardo-Gutiérrez]
Let o be a nonconstant rational map that takes
D into itself, with

o(z) = 1/~ 1(2)

and
zo'(2)

w(z) =705

If f is a rational function with no poles on 0D
and g is a polynomial, then
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where the summation is taken over all branches
of o.
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Case I: |p(0)| > 1

4 4

Let f and g be polynomials. Note that
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Case II: |p(c0)| < 1

Let f and g be polynomials. Note that

(f.Cg)) = — f(so(@)g(o—
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Case III: |p(0)| =1

Take O < r < 1 and consider the map re(z).
Appeal to Case IIL
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Some open questions:

e Can one use this formula to find ||Cy|| when
¢ . D — D is a rational function?

e \What can one say about Cj';) on other spaces?
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