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Zeros of Hypergeometric Functions and the Norm of a
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Abstract. Let ϕ be an analytic self-map of the unit disk; let Cϕ denote the
corresponding composition operator acting on the Hardy space H2. Although
the precise value of ‖Cϕ‖ is quite difficult to calculate, some progress has
been made in the case when ϕ is a linear fractional map. A recent paper by
Basor and Retsek demonstrates a connection between the norm of such an
operator and the zeros of a particular hypergeometric series. Here we will
pursue this line of inquiry further. We shall appeal to several results relating
to hypergeometric series — many of which are quite old — to deduce more
information about the norm of a composition operator, in particular about the
spectrum of C∗

ϕCϕ. Furthermore, we will use our knowledge of composition
operators to establish an apparently new result pertaining to the zeros of
hypergeometric series.
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1. Composition operators

Let D denote the open unit disk in the complex plane. The Hardy space H2 is
the Hilbert space consisting of all analytic functions f(z) =

∑∞
k=0 akz

k on D such
that

‖f‖2
H2 :=

∞∑
k=0

|ak|2 <∞.

For any analytic map ϕ : D → D, we define the composition operator Cϕ on H2

by the rule

Cϕ(f) = f ◦ ϕ.
It is a consequence of Littlewood’s Subordination Theorem [15, Theorem 2] that
every composition operator takes H2 boundedly into itself. Moreover, for any
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ϕ : D → D, it is well known (see [5, Corollary 3.7]) that

(1)
1

1− |ϕ(0)|2
≤ ‖Cϕ‖2 ≤ 1 + |ϕ(0)|

1− |ϕ(0)|
.

It is obvious that ‖Cϕ‖ = 1 whenever ϕ(0) = 0. When ϕ(0) 6= 0, it is known

that ‖Cϕ‖2 equals the lower bound in (1) if and only if ϕ is a constant map
([8, Lemma 4.1], [18, Theorem 4]), and that it equals the upper bound if and
only if ϕ is an inner function ([17, Theorem 1], [21, Theorem 5.2]). Nevertheless,
there are still very few cases for which we can determine ‖Cϕ‖ explicitly.

The strategy for determining the norm of Cϕ has often involved examining the
spectrum of the operator C∗

ϕCϕ. Recall that the spectral radius of C∗
ϕCϕ equals

‖C∗
ϕCϕ‖ = ‖Cϕ‖2. The following fact, which follows from an elementary Hilbert

space argument (see [9, Proposition 1.2]), underscores the connection between
the spectrum of C∗

ϕCϕ and the norm of Cϕ.

Proposition 1. Suppose that T is a bounded operator on a Hilbert space H. Let h
be an element of H; then ‖T (h)‖ = ‖T‖ ‖h‖ if and only if (T ∗T )(h) = ‖T‖2 h.

In other words, Cϕ attains its norm on f if and only if f is an eigenfunction

for C∗
ϕCϕ corresponding to the eigenvalue ‖Cϕ‖2. Furthermore, as long as ϕ is

not an inner function, we know ([8, Proposition 2.3]) that such an eigenfunction
cannot vanish at any point in D.

One important consequence of Proposition 1 pertains to the relationship between
the norm and essential norm of an operator. Recall that the essential norm ‖T‖e

of an operator T : H → H is defined in the following manner:

‖T‖e := inf
K
‖T −K‖,

the infimum being taken over the set of all compact operators K : H → H.
Clearly ‖T‖e ≤ ‖T‖ for any operator T . It follows from Proposition 1 that
T is norm-attaining whenever ‖T‖e < ‖T‖ (see [8, Proposition 2.2]). As it
happens, we do have a concrete formula [20, Theorem 2.3] for the essential norm
of a composition operator acting on the Hardy space. For example, if ϕ is a non-
automorphic linear fractional map with ϕ(1) = 1, we know that ‖Cϕ‖2

e = 1/ϕ′(1).

Most of the attempts to calculate the norm of a particular composition operator
have, in fact, been carried out in the setting where ϕ is a (non-constant) linear
fractional map; that is, where ϕ : D → D has the form

ϕ(z) =
az + b

cz + d
.

There have been several interesting results pertaining to such operators, most of
which rely on a formula due to Carl Cowen [4, Theorem 2] for the adjoint C∗

ϕ.
In particular, Cowen showed that C∗

ϕ = TγCσT
∗
η , where

(2) σ(z) =
az − c

−bz + d
, γ(z) =

1

−bz + d
, η(z) = cz + d.
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In this setting, Tγ and Tη denote the analytic Toeplitz operators with symbols γ
and η. Note that σ is a self-map of D if and only if ϕ has the same property
(since σ = ρ ◦ ϕ−1 ◦ ρ, where ρ(z) = 1/z).

As a consequence of Cowen’s adjoint formula, the author [8, p. 817] observed
that the operator C∗

ϕCϕ can be written

(3) (C∗
ϕCϕf)(z) = ψ(z)f(τ(z)) + χ(z)f(ϕ(0))

for all z in D, where

τ(z) = ϕ(σ(z)), ψ(z) =
(ad− bc)z

(az − c)(−bz + d)
, χ(z) =

c

−az + c
.

This representation is valid everywhere except the point σ−1(0) = c/a, which
may or may not lie in D. Let λ be an eigenvalue for C∗

ϕCϕ, with corresponding
eigenfunction g. Iterating equation (3), one can show [8, Proposition 5.1] that

λj+1g(0) =

[
j−1∏
m=0

ψ(τ [m](ϕ(0)))

]
g(τ [j](ϕ(0)))

+

j−1∑
k=0

χ(τ [k](ϕ(0)))

[
k−1∏
m=0

ψ(τ [m](ϕ(0)))

]
λj−kg(0)

for any integer j ≥ 0. Here τ [k] denotes the kth iterate of τ = ϕ ◦ σ; that is, τ [0]

is the identity map on D and τ [k+1] = τ ◦ τ [k].

There are two recent papers that have employed this general line of reasoning.
In the first, the author [8] considered the linear fractional maps ϕ that satisfy a
particular finiteness condition: namely that τ [n](ϕ(0)) = 0 for some integer n ≥ 0.
In this case, we can find a polynomial equation that allows us to determine ‖Cϕ‖.
We state a somewhat simplified version of this result:

Theorem 2. Let ϕ : D → D be a linear fractional map, with ϕ(z) 6= az. Suppose
that there is some natural number n such that τ [n](ϕ(0)) = 0. Let λ be an eigen-
value for the operator C∗

ϕCϕ whose eigenfunctions do not vanish at the origin.
Then λ is a solution to the polynomial equation

(4) λn+1 −
n∑

k=0

χ(τ [k](ϕ(0)))

[
k−1∏
m=0

ψ(τ [m](ϕ(0)))

]
λn−k = 0.

Moreover, any λ that satisfies equation (4) is an eigenvalue of C∗
ϕCϕ.

Bourdon, Fry, Hammond, and Spofford [3] subsequently considered the more
general situation, where this finiteness condition does not necessarily hold. One
of their principal theorems pertains to the case where supz∈D |ϕ(z)| = 1; without
loss of generality, we may assume that such a map fixes the point 1. With a bit
of work, we may extend their result somewhat to make the following observation.
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Theorem 3. Let ϕ : D → D be a non-automorphic linear fractional map that
fixes the point 1. If λ is an eigenvalue of C∗

ϕCϕ with λ > ‖Cϕ‖2
e, then λ is a

solution to the equation

(5)
∞∑

k=0

χ(τ [k](ϕ(0)))

[
k−1∏
m=0

ψ(τ [m](ϕ(0)))

] (
1

λ

)k+1

= 1.

Conversely, any complex number |λ| > ‖Cϕ‖2
e that is a solution to (5) is an

eigenvalue for C∗
ϕCϕ.

When ϕ(1) = 1, as one would expect, Theorem 2 is simply a special case of
Theorem 3. While these representations are quite helpful, it turns out that there
is a particularly elegant way to rewrite equation (5). This new representation,
first introduced by Basor and Retsek [2], makes it much easier to obtain infor-
mation about the eigenvalues of C∗

ϕCϕ, and hence about the norm of Cϕ. In
certain instances (as stated in Proposition 5), we will be able to determine the
exact number of solutions to equation (5), a question that does not have an
obvious answer apart from the case where τ [n](ϕ(0)) = 0. In fact, when it is
applicable, this result will allow us completely to determine the spectrum of the
operator C∗

ϕCϕ (Theorem 7). In the more general setting, we will ultimately
direct our attention in the opposite direction, employing our knowledge of com-
position operators to obtain information about the zeros of a particular class of
hypergeometric series (Theorem 8).

2. Hypergeometric functions

For a, b, and c in C, we define the hypergeometric series

2F1(a, b; c; z) :=
∞∑

k=0

(a)k(b)k

(c)kk!
zk,

where ( · )k denotes Pochhammer’s symbol (also known as the shifted factorial):

(ζ)k :=

{
1, k = 0,

ζ(ζ + 1) · · · (ζ + k − 1), k = 1, 2, 3, . . . .

Note that 2F1(a, b; c; z) reduces to a polynomial if and only if either a or b is a
non-positive integer. If c is a non-positive integer, then 2F1(a, b; c; z) is undefined.
Except in the polynomial case, the series has radius of convergence 1, as one can
see by applying the ratio test. Other basic properties of hypergeometric series
are discussed in [1, Chapter 2].

Attempting to make the series representation for ‖Cϕ‖2 more manageable, Basor
and Retsek [2] were able to translate equation (5) into hypergeometric terms.
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They observed that any non-automorphic linear fractional ϕ : D → D with
ϕ(1) = 1 can be written

(6) ϕ(z) =
(β − 1)z + α+ 1

αz + β

for certain complex numbers α and β. By translating the problem to the right
half-plane, one sees that such a ϕ is a self-map of D (that fixes 1) if and only
both α + β and β − α− 1 are positive real numbers. After a bit of work, Basor
and Retsek obtained a much more straightforward way to write equation (5). In
particular, they showed that

(7)
∞∑

k=0

χ(τ [k](ϕ(0)))

[
k−1∏
m=0

ψ(τ [m](ϕ(0)))

]
zk+1 = 1− 2F1(α, β; δ; z/q),

where

δ = α+ β and q = ϕ′(1) =
β − α− 1

α+ β
.

In view of Theorem 3, the question of finding the norm of Cϕ can be reduced
to determining the zeros of the hypergeometric function 2F1(α, β; δ; z). In other
words, a real number λ > 1/q = ‖Cϕ‖2

e is an eigenvalue for C∗
ϕCϕ if and only

if the number (qλ)−1 = ‖Cϕ‖2
e λ

−1 in (0, 1) is a zero of the hypergeometric se-

ries 2F1(α, β; δ; z). In particular, λ = ‖Cϕ‖2, the largest eigenvalue of C∗
ϕCϕ,

corresponds to the smallest zero of 2F1(α, β; δ; z) in the interval (0, 1).

Basor and Retsek used this observation to obtain a good deal of information
about the norm of Cϕ. In particular, for ϕ : D → D defined as in (6), they
showed that equation (5) always has at least one solution, except in the case
where α is a non-negative real number. They obtained this result for negative
values of α by applying a limit theorem due to Gauss (see [1, Theorem 2.1.3]).
For non-real values of α, they employed Pfaff’s transformation (see [1, Theorem
2.2.5]) to obtain a series with real coefficients. (Basor and Retsek actually stated
these results in terms of the parameter d = β/α, but their conclusions can easily
be rewritten in terms of α.) The goal of this paper is to analyze more precisely
the zeros of the relevant hypergeometric series. This analysis will tell us a good
deal about the solutions to equation (5), and hence about the eigenvalues of
C∗

ϕCϕ.

At this point, let us pause to consider the conditions under which the hyper-
geometric series 2F1(α, β; δ; z) reduces to a polynomial. The conditions α+β > 0
and β − α − 1 > 0, taken together, imply that Re β > 1/2. Therefore we only
need to consider the case where α is a non-positive integer. Observe that the
condition α = 0 corresponds to the situation where ϕ is an affine map. In this
instance, the function 2F1(α, β; δ; z) is identically 1, so the hypergeometric series
has no zeros. Hence we will only concern ourselves with the situation where α is
a negative integer.
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During the course of their exposition, Basor and Retsek [2, Lemma 3.2] obtained
a formula for the map τ = ϕ ◦ σ and for the iterates τ [k]. In terms of the
parameters α and β, one can write

τ [k](z) =
(β − α− 1− k)z + k

−kz + β − α− 1 + k

for all k ≥ 0. Consequently

(8) τ [k](ϕ(0)) =
(β − α− 1− k)

(
α+1

β

)
+ k

−k
(

α+1
β

)
+ β − α− 1 + k

=
α+ 1 + k

β + k
.

Hence we see that τ [n](ϕ(0)) = 0 if and only if α = −(n + 1). This observation
hardly comes as a surprise. What we are encountering are the very cases for
which the author previously discovered a polynomial representation for ‖Cϕ‖2.
In particular, consider the maps

ϕ(z) =
rz − n

−(n+ 1)z + r + 1

for r > n, which are already known (see [8, Section 7]) to have the property
that τ [n](ϕ(0)) = 0. These maps can be rewritten in our standard form (6), with
α = −(n+ 1) and β = r + 1.

We remark that, in this situation, there is another common way of writing the

series 2F1(α, β; δ; z). Recall that the Jacobi polynomial P
(ζ,η)
m is defined in the

following manner:

(9) P (ζ,η)
m (z) :=

(ζ + 1)m

m!
2F1

(
−m,m+ ζ + η + 1; ζ + 1;

1− z

2

)
.

(See [1, Definition 2.5.1].) Consequently, if α = −(n+1), a real number λ > 1/q
is an eigenvalue for C∗

ϕCϕ if and only if the number (qλ − 2)/(qλ) in (−1, 1)

is a zero of the Jacobi polynomial P
(β−n−2,0)
n+1 (z). In particular, the eigenvalue

λ = ‖Cϕ‖2 corresponds to the largest zero of this polynomial within the interval
(−1, 1).

Before proceeding further, we mention a general result that pertains to all hy-
pergeometric series.

Proposition 4. Let a, b, and c be complex numbers, with c not a non-positive
integer. Then 2F1(a, b; c; z) can have only simple zeros in D.

Proof. Suppose that ξ in D is a zero of 2F1(a, b; c; z) that has multiplicity 2 or
greater. In other words, 2F1(a, b; c; ξ) = 2F

′
1(a, b; c; ξ) = 0. One of the defining

properties of the hypergeometric series (see [1, Section 2.3]) is the differential
equation

(10) z(1− z)y′′ + [c− (a+ b+ 1)z]y′ − aby = 0.
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Since 2F1(a, b; c; 0) = 1, it follows that ξ 6= 0; hence 2F
′′
1 (a, b; c; ξ) must equal 0.

Differentiating equation (10), we see that 2F
′′′
1 (a, b; c; ξ) = 0 as well. Proceeding

inductively, one can show 2F
(k)
1 (a, b; c; ξ) = 0 for any natural number k, which is

impossible.

The next section consists of a more detailed analysis of the zeros of certain
hypergeometric series, which we use to obtain information about the eigenvalues
of C∗

ϕCϕ.

3. Real values of α

We begin by considering the case where the parameter α, as defined in (6), is
real. Since α + β > 0, it follows that β must be real as well, with β > 1/2. If
α ≥ 0, then all of the quantities α, β, and δ are non-negative. Hence, as has
already been observed (see [2, 3]), the series 2F1(α, β; δ; z) has no zeros in the
interval (0, 1). Therefore C∗

ϕCϕ has no eigenvalues which are greater than ‖Cϕ‖2
e,

which means that ‖Cϕ‖ = ‖Cϕ‖e.

Suppose then that α < 0. In this situation, Basor and Retsek [2, Proposition 4.2]
observed that 2F1(α, β; δ; z) has at least one zero in the interval (0, 1). They
divided their proof into two cases: when α ≤ −1, in which case this fact can
be deduced simply by comparing the norm and the essential norm of Cϕ, and
−1 < α < 0, which requires a bit more work. In the case where −1 < α < 0, one
interesting consequence of their proof is that 2F1(α, β; δ; z) has exactly one zero
in the interval (0, 1); in other words, equation (5) has only one solution, so C∗

ϕCϕ

has only one eigenvalue larger than ‖Cϕ‖2
e. This raises an interesting question:

is it possible to determine exactly how many solutions there are to equation (5)?
In other words, how many eigenvalues does C∗

ϕCϕ have that are greater than

‖Cϕ‖2
e? This question, of course, can be answered simply by examining the zeros

of the series 2F1(α, β; δ; z).

The problem of determining the number of zeros of a hypergeometric series has
received a good deal of attention over the years. It should come as no surprise
that there are some fairly old results that provide enough information to answer
the question we have just posed. The particular results we shall cite are due to
Van Vleck [24], whose work is based on an earlier paper of Klein [13]. (See also
a pair of papers by Hurwitz [11, 12].) In the special case of Jacobi polynomials,
the pertinent facts were originally obtained by Stieltjes [23] and Hilbert [10]
(see [23, Theorem 6.72] for a more modern treatment). Most of these results,
in particular the ones to which we shall appeal, are stated in terms of Klein’s
symbol

E(u) :=


0, u ≤ 0,

buc, u > 0, u not an integer,

u− 1, u = 1, 2, 3, . . . ,
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where b ·c denotes the greatest integer function (otherwise known as the floor
function). In particular, we can state the following proposition.

Proposition 5. Let α and β be real numbers, such that δ = α + β > 0 and
β − α − 1 > 0. The hypergeometric series 2F1(α, β; δ; z) has exactly E(−α + 1)
zeros in the interval (0, 1). Consequently, if ϕ : D → D has the form

ϕ(z) =
(β − 1)z + α+ 1

αz + β
,

then the operator C∗
ϕCϕ has exactly E(−α+ 1) eigenvalues greater than ‖Cϕ‖2

e.

In other words, equation (5) has no solutions if α ≥ 0 and has exactly m solutions
if −m ≤ α < −m+1. This result confirms the facts we already knew for α > −1,
but provides us with new information for α ≤ −1.

Proof of Proposition 5. Let a, b, and c be real numbers, and consider the
series 2F1(a, b; c; z). Van Vleck treated a number of special cases, only two of
which pertain to the situation we are considering. First of all, if c > 1, the series
F (a, b; c; z) has the following number of zeros in the interval (0, 1):

(11) E

(
|a− b| − |1− c| − |c− a− b|+ 1

2

)
.

(See [24, p. 124].) Secondly, suppose that b|a− b|c > b|1− c|c+ b|c−a− b|c with
c < 1; then F (a, b; c; z) has exactly

(12) E

(
|1− c|+ |a− b| − |c− a− b|+ 1

2

)
− E(|1− c|)

zeros in (0, 1). (See [24, p. 128].)

Now consider our original parameters α, β, and δ. If δ > 1, then expression (11)
tells us that 2F1(α, β; δ; z) has exactly E(−α + 1) zeros in (0, 1). Now suppose
that 0 < δ < 1. Observe that b|α − β|c > 1, while b|1 − δ|c and b|δ − α − β|c
both equal 0. Consequently expression (12) applies to this situation, giving us
the same result as in the previous case: namely that 2F1(α, β; δ; z) has E(−α+1)
zeros in the interval (0, 1). The case where δ = 1 is not explicitly addressed by
Van Vleck, but one can use Hurwitz’ Theorem (see [16, p. 423]) to show that the
same result holds in that case.

Remark 1. Once we have determined the number of zeros that 2F1(α, β; δ; z) has
in the interval (0, 1), it is natural to ask whether the series has any other zeros in
D. Similarly, since it is well known that a hypergeometric series can be analyti-
cally continued to the set C\{x ∈ R : x ≥ 1}, one might wonder how many zeros
the analytic continuation of 2F1(α, β; δ; z) has throughout the complex plane. As
it turns out, the function 2F1(α, β; δ; z) has no zeros outside of the interval (0, 1).
This fact is obvious when α = −(n + 1), since in that case 2F1(α, β; δ; z) is a
polynomial of degree n + 1. Since the function has E(−α+ 1) = n+ 1 zeros in
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(0, 1), it cannot have any zeros elsewhere. The case where α is not an integer
requires a bit more work. Van Vleck [24] obtained several pertinent results, but
there is a simpler theorem (due to Runckel [19]) that will suffice for our purposes.
Suppose that b− a ≥ 0 and c− a− b ≥ 0. According to Runckel’s theorem, the
function 2F1(a, b; c; z) has no zeros in C \ {x ∈ R : x ≥ 1} if a > 0; on the other
hand, if a < 0 and c− a > 0, it has precisely

b−ac+
1 + sign{Γ(a)Γ(b)Γ(c− a)Γ(c− b)}

2

zeros. (The remaining case is also dealt with, but is not of interest to us here.)
Considering the parameters α, β, and δ with which we have been working, we
see that in C\{x ∈ R : x ≥ 1} the function 2F1(α, β; δ; z) has exactly E(−α+1)
zeros.

It is worth noting that Proposition 5 has an interesting geometrical interpreta-
tion. As it turns out, the number of solutions to equation (5) depends on the
position of ϕ(0) relative to the point τ(0) = 1/(β − α), the center of the image
disk ϕ(D). In general, the farther ϕ(0) is to the left of τ(0), the more solutions
there are to equation (5).

Corollary 6. Let α and β be real numbers, with α + β > 0 and β − α− 1 > 0,
and consider the map

ϕ(z) =
(β − 1)z + α+ 1

αz + β
.

Equation (5) has exactly m solutions, where m is the smallest non-negative in-
teger such that τ [m](ϕ(0)) ≥ τ(0).

Proof. In view of (8), a simple calculation shows that

(13) τ [k](ϕ(0))− τ(0) =
α+ 1 + k

β + k
− 1

β − α
=

(α+ k)(β − α− 1)

(β + k)(β − α)

for any integer k ≥ 0. Note that the quantities β − α − 1, β + k, and β − α
are all guaranteed to be positive. Hence ϕ(0) = τ [0](ϕ(0)) ≥ τ(0) if and only if
α ≥ 0, in which case equation (5) has no solutions. Suppose then that α < 0; let
m be the positive integer such that −m ≤ α < −m+1. It follows from (13) that
m is the smallest integer for which τ [m](ϕ(0)) ≥ τ(0). Moreover, Proposition 5
dictates that equation (5) has exactly m solutions.

As a consequence of this corollary, we can interpret the condition τ [n](ϕ(0)) = 0
(that is, α = −(n+1) for some n ≥ 0) in a new manner. Note that this condition
can be rewritten τ [n+1](ϕ(0)) = τ(0). In other words, any ϕ with this property
can be considered an “extremal case” of the situation where τ [n+1](ϕ(0)) ≥ τ(0).
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Figure 1. The iterates τ [k](ϕ(0)).

Figure 1 serves as an illustration of Corollary 6. Consider the map

ϕ(z) =
13z − 11

−19z + 21
.

The larger disk in the figure represents D and the smaller disk ϕ(D). The ten
smaller points, proceeding from left to right, signify τ [k](ϕ(0)) for k = 0, 1, . . . , 9.
The larger point denotes τ(0) = 1/5, the center of ϕ(D). Since it takes three
iterations for τ [k](ϕ(0)) to exceed τ(0), it follows that equation (5) has exactly
three solutions. This corresponds to the fact that the value of α in this case is
−19/8, so E(−α+ 1) = 3.

Once we have found the number of eigenvalues of C∗
ϕCϕ, it is not difficult to de-

termine the entire spectrum of the operator. We shall appeal to a result recently
established by Kriete, MacCluer, and Moorhouse [14, Theorem 3]. Suppose that
ϕ : D → D is a linear fractional map, as in (6); then there is a compact operator
K : H2 → H2 such that C∗

ϕ = (1/q)Cσ +K, where σ : D → D is the linear frac-
tional map defined in (2) and q = ϕ′(1). Hence the essential spectrum of C∗

ϕCϕ

is identical to the essential spectrum of (1/q)CσCϕ = (1/q)Cτ . Therefore, as
noted by Kriete et al. [14, Corollary 3], the essential spectrum of C∗

ϕCϕ consists

precisely of the real interval [0, 1/q] = [0, ‖Cϕ‖2
e].

Any element of the spectrum of C∗
ϕCϕ that is larger than ‖Cϕ‖2

e, the essential
spectral radius, must be an eigenvalue. In the case where α is real, we have
already shown that the number of eigenvalues greater than ‖Cϕ‖2

e is precisely
E(−α+ 1). In other words, we have established the following theorem.
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Theorem 7. Let α and β be real numbers, with δ = α+β > 0 and β−α−1 > 0,
and consider the map

ϕ(z) =
(β − 1)z + α+ 1

αz + β
.

The spectrum of the operator C∗
ϕCϕ is precisely[

0, ‖Cϕ‖2
e

]
∪ {λk}m

k=1 ,

where m = E(−α + 1) and λ1, λ2, . . . , λm are distinct eigenvalues greater than
‖Cϕ‖2

e. Furthermore, for each λk, the number (qλk)
−1 = ‖Cϕ‖2

e λ
−1
k is a zero of

the hypergeometric series 2F1(α, β; δ; z).

Unfortunately, the situation for complex values of α still remains something of a
mystery.

4. Complex values of α

When the parameters α and β are not real, it is difficult to make any definite
statement about the number of zeros of the series 2F1(α, β; δ; z). As we have
already mentioned, Basor and Retsek [2, Theorem 4.4] showed that the series
must have at least one zero in the interval (0, 1), except in the case where α
is a positive real number. We also know that the number of zeros in D must
be finite (see [7, pp. 99–100]). In this situation, it turns out to be easier to use
composition operators to deduce information about hypergeometric series, rather
than the other way around. In particular, we can obtain the following result.

Theorem 8. Let α and β be complex numbers, with δ = α + β > 0 and
β − α− 1 > 0; suppose further that α is not a non-negative real number. All
of the zeros of the hypergeometric series 2F1(α, β; δ; z) within D must lie on the
positive real axis. Moreover, the smallest such zero must be greater than or equal
to

(14)
(α+ β)(|β| − |α+ 1|)

(β − α− 1)(|β|+ |α+ 1|)
and less than or equal to

(15)
(α+ β)(|β|2 − |α+ 1|2)

(β − α− 1)|β|2
.

Proof. Consider the map ϕ, as defined in (6). We know that ϕ must take D
into itself, with ϕ(1) = 1 and

q = ϕ′(1) =
β − α− 1

α+ β
> 0.

Suppose that a point ξ in D is a zero of 2F1(α, β; δ; z). As a consequence of
Theorem 3 and equation (7), we see that (qξ)−1 must be an eigenvalue of C∗

ϕCϕ;
hence ξ must be a positive real number. We know that the smallest zero of
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2F1(α, β; δ; z) corresponds to the largest eigenvalue of C∗
ϕCϕ, that is, to ‖Cϕ‖2.

Equation (1) provides us with an upper and lower bound for the ‖Cϕ‖2. Recalling
that ϕ(0) = (α + 1)/β, we obtain the stated bounds for the smallest zero of

2F1(α, β; δ; z).

If Reα > −1/2, it is possible for the quantity in expression (15) to be greater
than 1; hence the upper bound does not always provide us with useful informa-
tion. Expression (14), however, is always strictly greater than 0. It appears that
the result of Theorem 8 has not been known previously, and that it would be dif-
ficult to prove using the conventional techniques associated with hypergeometric
functions.

Combining all the information we have obtained so far, we can state a version of
this result that pertains to a particular class of Jacobi polynomials.

Corollary 9. Let m be a positive integer and let ζ be a real number greater

than −1. The Jacobi polynomial P
(ζ,0)
m (z) has precisely m zeros in the interval

(−1, 1), the largest of which is greater than or equal to

(ζ +m+ 1)2 − 2(ζ + 1)(ζ + 2)

(ζ +m+ 1)2

and less than or equal to

(ζ + 2m)2 − 2(ζ + 1)(ζ + 2)

(ζ + 2m)2
.

Proof. Let α = −m and β = ζ + m + 1. It follows from our assumptions
that α + β = ζ + 1 > 0 and β − α − 1 = ζ + 2m > 0. Hence Proposition 5
dictates that 2F1(α, β; δ, z) has m zeros in (0, 1). Similarly, Theorem 8 provides
us with an upper and lower bound for the smallest of these zeros. Recalling the
correspondence between Jacobi polynomials and hypergeometric series, as shown
in (9), we obtain the stated results.

Remark 2. The most obvious question that remains to be answered is how many
solutions equation (5) has when α and β are not real. In this setting, it would also
be desirable to provide some sort of geometric interpretation, akin to Corollary 6,
for the number of solutions. In addition, there are several other lines of inquiry
one might pursue. For example, one could consider linear fractional ϕ : D → D
with supz∈D |ϕ(z)| < 1. For some of these maps, such as ϕ(z) = 1/(3− z), it has
been shown [3, Theorem 4.3] that the norm of Cϕ is still given by equation (5).
On the other hand, there are many maps, for instance ϕ(z) = (4z+4)/(z+12), for
which equation (5) provides no information. In this situation, there is no obvious
way to rewrite (5) in terms of hypergeometric series. It would be desirable to
find an alternate representation that would allow us to determine when (5) has
a solution, and to obtain further information about the spectrum of C∗

ϕCϕ.
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Certain norm calculations have recently been carried out in the setting where ϕ
is a rational function (see [6]). It would also be interesting to obtain a general
representation for the eigenvalues of C∗

ϕCϕ that holds in such cases as well.
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22. T. J. Stieltjes, Sur les polynômes de Jacobi, C. R. Math. Acad. Sci. Paris 100 (1885),

620–622.



50 C. Hammond CMFT
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