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Abstract— In order for evolution to populate the planet with 
multiple species, two processes need to be at work.  One is 
speciation, which involves the development of a new 
reproductively isolated species from an ancestral one.  The other 
is that a reproductively isolated species can evolve to be 
more complex and potentially more capable over time.  This 
second process is what we address in the research reported in 
this paper.  One of the issues with developing individuals with 
more complex attributes is that those attributes typically take 
multiple mutations to be viable and before that point, the 
changes made by mutations are often detrimental. In this 
research, we use a simulated environment filled with simple 
agents and a genetic algorithm operating on these agents, each 
of which has its own set of chromosomes.  We use this to test the 
plausibility of the species developing more complex structures 
(in this case sight) as the genetic algorithm population survives 
and evolves over 1000s of generations. In order to better 
simulate intermediate detrimental mutations, each mutation 
results in an increased metabolic cost for the agent, leading to 
higher energy expenditure with every movement or action 
taken.  Tests were done with differing number of mutations 
required before sight was developed.  The results showed that 
evolution of complex attributes are possible depending on the 
number of detrimental mutations required to make the attribute 
an advantage to the agent. 
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I. INTRODUCTION 
    The theory of evolution requires that new species can 
develop from previous species and that species can evolve to 
have increasingly complex attributes.   The goal of our 
research is to use Genetic Algorithms (GAs) to model 
evolution, so both of these requirements have to be addressed.  
In previous research, it was shown that allopatric speciation 
was possible in an environment of simple agents interacting 
as they moved, ate food, and mated with each other [1, 2].  
We are using the latest of the models used in this research to 
experiment with the evolution of more complex attributes in 
a population of a single species.  One of the issues with 
biological evolution is that complex structures such as wings 
and eyes cannot form through a single mutation. Several 
mutations are required, and in many cases, these mutations 
result in the agent being less fit than agents without one or 
more of these incremental mutations. We refer to this 
temporary lowering of an organism’s fitness while evolving 
a complex organ as a fitness valley [3]. For example, the first 
step in evolving an eye would be to have an area of skin 
sensitive to light. Although the evolution of an eye may be 
advantageous and increase the fitness of the organism in its 
environment, traversing through the fitness valley in this case 
is probably also a liability since this area of skin is more 
vulnerable to injury.  In the case of a wing, the first notable 
mutation would probably be a bump on the thorax, which 

could eventually develop through mutations in further 
generations to become a wing. However, this proto-wing 
would most likely hinder the fitness of the organism until 
further mutations were able to improve the use or efficacy of 
the wing.  

    Over time, several models have been developed to address 
the mechanisms of evolution previously discussed. One of the 
earliest approaches, Tierra, introduced a system of self-
replicating digital organisms that compete for computational 
resources [4]. This system notably involved no exogenous 
fitness function, allowing the organisms in the environment 
to demonstrate rudimentary concepts of artificial evolution in 
silico. Shortly after, Avida expanded on this concept, 
providing a more structured framework for studying adaptive 
evolution through controlled experiments [5]. These models 
primarily focused on microevolutionary processes, 
emphasizing mutation and selection within relatively simple 
environments, and were highly effective at demonstrating 
adaptation but limited in their ability to explore complex 
traits that require overcoming fitness valleys. Following these 
foundational models, the Tangled Nature Model introduced a 
more ecological perspective by simulating evolutionary 
dynamics within complex adaptive systems, allowing for the 
study of species interactions and the role of 
macroevolutionary processes in shaping biodiversity [6]. 
This model laid the groundwork for understanding how 
populations traverse adaptive landscapes with multiple peaks 
and valleys, but like its predecessors, it did not focus on the 
evolution of complex, multi-step traits within individual 
organisms. More recent advancements, such as Aevol, 
extended the capabilities of these early systems by 
incorporating modular genomes, enabling the evolution of 
more sophisticated phenotypes [7]. This model was one of the 
first to investigate how genetic regulatory networks could 
facilitate the traversal of fitness valleys, making it possible 
for digital organisms to evolve traits with multiple interacting 
components. Building on these efforts, LaBar & Adami 
examined how complex traits could evolve in rugged fitness 
landscapes, focusing on genetic interactions and 
environmental variability [8]. Similarly, Arthur et al. applied 
digital evolution to investigate how functional capabilities 
arise and contribute to speciation under various selection 
pressures, demonstrating how small genetic changes can 
accumulate to form complex traits [9]. Despite these 
advancements, most of these models do not specifically 
address the evolution of complex organs that require 
overcoming fitness gaps through incremental mutations, as 
the algorithms were often geared towards optimizing simpler 
adaptive traits. Our research aims to address this gap by using 
GAs to simulate the effects of the step-by-step development 
of complex attributes, such as sight, within a controlled 
environment.  



    In our research, we use the environment previously 
developed to investigate the evolution of “sight” in digital 
organisms. While earlier versions of this environment only 
allowed agents to detect adjacent spaces, our experiments 
focus on agents evolving to sense two squares away from 
their position. This progression towards increased sensory 
capacity requires multiple mutations, each of which incurs an 
energy cost, simulating the incremental and often detrimental 
nature of intermediate evolutionary steps. This is not to say 
that we develop the mechanism for increased 
complexity/information to enter the chromosome.  How that 
happens is still an open question.  What we do is create a 
mechanism within the existing chromosome for mutations to 
create the stepping-stones for advanced features. We 
conducted a series of tests to determine how varying the 
number of required mutations and their associated energy 
costs impacted the likelihood of evolving sight. The results 
demonstrate that under the right conditions, even multi-step 
adaptations with an associated cost can evolve and become 
advantageous, confirming that complex traits can emerge 
depending on the evolutionary pressures and the structure of 
the fitness landscape. 

    As the learning system used in our environment, GAs are 
designed to emulate natural selection and have traditionally 
been used to find optimal arrangements of gene sequences to 
solve specific computational problems [10]. However, most 
standard GAs are limited in their ability to simulate the 
gradual emergence of new complexities or morphological 
traits in evolving agents. Some approaches, like 
NeuroEvolution of Augmenting Topologies (NEAT), 
introduced by Stanley and Miikkulainen, address the 
evolution of complex neural architectures that can enhance 
an agent’s control systems [11]. NEAT allows for the 
incremental evolution of increasingly sophisticated neural 
networks, utilizing genetic crossover and mutation to add 
new nodes and connections. This work has made significant 
strides in creating advanced control systems, but its primary 
focus is on neural evolution rather than the development of 
new physical attributes or morphological complexity. 

    Similarly, Genetic Programming (GP), introduced by John 
Koza, evolves tree-like structures to solve problems by 
modifying the programmatic logic of agents [12]. While GP 
has been successful in evolving complex, hierarchical 
solutions, it does not inherently support the stepwise 
formation of physical traits that require overcoming fitness 
valleys. Each of these systems introduces mechanisms for 
increasing control complexity but lacks a structured way to 
evolve complex traits that have an initially detrimental effect 
on an agent’s fitness. In our work, we address this limitation 
by focusing on the physical evolution of a sensory organ, 
demonstrating how complex attributes can emerge through 
incremental mutations, despite the associated temporary 
reduction in fitness. 

    This work is based on a model previously created by Parker 
and Nash [2], which is being rewritten for release as a 
standalone research environment. However, the Java source 
code for the model is currently available upon request. 

II. ENVIRONMENT 
    The model uses a grid based representation of the 
environment, over which agents can move, eat, and interact 
with each other. This representation was chosen as it is simple 
enough to minimize confounding factors outside agent’s 
direct control, yet complex enough such that evolution could 
occur in a natural way. Additionally, using a grid allows us to 
easily modify the size of the environment and observe if 
results are consistent over different environment sizes. 

    The grid consists of discrete blocks (spaces) which can 
either be empty or occupied by some entity. In the research 
reported in this paper, the spaces can be occupied by either 
food (seeds) or the agents themselves. Seeds are randomly 
generated in the grid as time progresses, and act as a food 
source for the agents. These seeds can be of various sizes 
(small, medium, large) and are represented visually as 
squares of varying sizes. Agents are initialized randomly and 
are represented by circles of varying size and colors. The 
color is defined by the agent's genome and the size is defined 
by the size of the agent, which is inherited separately from 
the genome. 

    The environment progresses based on time cycles (turns). 
During each turn a single action is performed by each living 
agent. Additionally, food is generated randomly on the grid 
each turn. The number of turns passed from the initial state 
of the grid is said to be the age of the environment, similarly 
the number of turns an agent has survived is said to be the age 
of that agent. Visual examples of this environment can be 
found in previous work [2]. 

III. AGENTS 
    Agents are the evolving entities in our environment and the 
only entity on the grid that is able to move between spaces. 
The only restriction placed on their movement is that they 
cannot move to a space already occupied by another agent. If 
two agents are adjacent to each other, they may interact. In 
the current model, the only interaction available between 
agents is reproduction. As the agents may reproduce freely, 
the total number of agents present on the grid is variable as it 
may increase or decrease depending on the actions of the 
agents, the amount of seeds available, and the current 
population size. 

    The most impactful trait of an agent is its size, as this 
dictates the type of seed the agent is best suited to consume. 
Large agents prefer larger seeds, whereas smaller agents 
prefer smaller seeds. Thus, the size of an agent directly affects 
how well it will perform in the environment.  

    Seeds provide the agents with energy when eaten, the 
amount of energy depending on both the size of the agent and 
the size of the seed [2]. Agents also lose a certain amount of 
energy each turn, the amount lost being equal to the square 
root of their age. The amount of energy an agent loses each 
turn can be modified and such modifications to the energy 
burn rate are discussed later in this paper.  

    An agent starts with 100 initial energy. As the agent 
performs actions, it burns energy passively. The only other 
source of energy consumption is reproduction, which carries 
an additional cost of 80 energy. This cost is only levied when 
reproduction results in the production of a child agent, since 



if both parent agents agree to reproduce there is no chance of 
failure. Conversely, if either parent decides not to reproduce 
or does not have enough energy to reproduce, then there is no 
chance of reproduction. As the agents age, energy 
consumption increases, meaning that agents must reproduce 
in order to maintain a stable population. Older agents are 
unable to consume enough food to cover their energy burn, 
even if they eat a seed on each turn. Therefore, while agents 
have variable lifespans, there is an upper limit to how long an 
agent can survive. 

    Other agent traits, such as the agent controller, secondary 
traits, and reproductive preferences, are stored in 
chromosomes. An action chromosome informs the agent 
controller, discussed later, of the priorities for that agent. A 
reproductive choice chromosome determines possible mates 
for that agent, such as preferred color, age, and phenotype.  

    Notably, the reproductive choice chromosome does not 
consider the size of a possible mate. This is because size 
directly affects fitness, and the agents should choose mates 
based on their own preferences rather than a pre-defined 
fitness. The phenotype chromosome contains a series of traits 
that are solely used for determining if an agent is an 
acceptable mate by the reproductive chromosome, as well as 
the sight gene. The specifics of the sight gene are discussed 
in that respective section. 

IV. AGENT SIGHT 
    During the initialization of the environment, all starting 
agents are created with a sight range of 1. Therefore, these 
agents are only able to see spaces directly adjacent to them. 
These initial agents have their sight gene set to contain only 
0 bits, representing a base state before any evolution has 
occurred. Over time, the agents may mutate during 
reproduction and gradually change these 0 bits to 1. As more 
bits in an agent’s sight gene become 1, indicating an 
intermediate internal body change, more energy is required 
for the agent to move, so it loses more energy each turn. The 
functional change in an agent’s sight is shown in Fig 1. 

    The increase in energy paid per bit, set as a hyperparameter 
before each test, scales linearly with the number of bits that 
become 1. This energy cost represents the cost of 
intermediate detrimental mutations that are often required in 
nature as more powerful senses are developed.  In addition, 
more powerful eyes consume more calories and thus consume 
more of an organism’s energy. 

 
Fig. 1. Agents initially have a sight of 1, denoted by the green tinted 
squares. Once the agent evolves to attain a sight of 2, it is able to see the 
yellow tinted squares. If this medium agent had evolved sight, it’s best move 
would be to move left or up, in order to get closer to the medium seed. If it 
had not evolved sight, it would likely move right, in order to consume the 
large seed, regardless of the lesser energy payoff. 

    If an agent has a sight gene containing all 1s, then that 
agent has evolved to have a sight range of 2. These agents are 
able to see spaces up to 2 blocks away from them, using 
blockwise distance. An agent does not benefit from having a 
sight gene containing a mix of 0s and 1s, all of the sight bits 
must be activated for the agent’s sight to increase.  Agents 
must accept some cost as they evolve sight, as they do not 
develop sight or receive any advantage after one random 
mutation. Instead, sight requires multiple mutations, each 
with a cost, evolved over many generations until full sight is 
achieved.  

V. AGENT CONTROLLER 
    Each turn, the agent controller will use the values in an 
agent’s action chromosome to determine the actions of that 
agent during that turn. Agents have access to a variety of 
actions although some actions may be unavailable. During 
each turn, the immediate surroundings of an agent are 
analyzed to determine the action the agent should take. 

    The method for determining an agent’s action differs from 
previous work using a similar model, as with the addition of 
sight the previous controller is no longer sufficient. 
Previously, each agent would try every action starting from 
the action with the highest priority. Once an action 
succeeded, the agent had finished its turn. However, with the 
addition of sight the agents must also consider direction, as if 
a high priority action could be taken after a turn of movement, 
it should begin moving in that direction. An example of this 
is shown in Fig. 2. 

    Instead of trying actions from highest to lowest priority, 
the agent observes the spaces around it (to a distance equal to 
the sight length of that agent) and determines a direction with 
the highest priority. This direction does not mean that a high 
priority action is immediately available in that direction, only 
that choosing that direction would either result in a high 
priority action or moving closer to a high priority action.  

 
Fig. 2. This agent would consider the upwards direction to contain a 
medium seed and a medium agent, the leftwards direction to contain a 
medium seed and a small seed, with the other directions not containing items 
of as high interest to a medium agent. If the agent highly prioritized 
reproduction, it would assign a higher priority to the upwards direction than 
the leftwards direction, as there is another medium agent in this direction, 
and use it’s turn to step upwards. 

    Once the agent chooses a direction, it then attempts to 
move in that direction. If there is another agent blocking that 
move, the agent then determines if it is willing to reproduce 
with that agent, attempting reproduction if so. If the move is 
successful, the agent then determines if there is a seed present 
on its new space. If so, the agent determines if it should eat 
that seed or not before its turn ends, if no seed is present the 
agent’s turn ends immediately. 



VI. GENETIC ALGORITHM 
    The priorities assigned by the agents to each action, the 
reproductive preferences, the agent’s phenotypes, and the 
sight gene for each agent are all specified and evolved by a 
GA. The agents pass down their characteristics to their 
children via genetic operations on the parents’ chromosomes. 

    The selection process is entirely determined by the agents 
instead of a fitness function; if two agents are adjacent to each 
other and their reproductive preferences are met by the other 
agent, then they are able to reproduce. The idea of selection 
based on agent fitness does not fully apply here, as any agent 
can reproduce with any other agent. A more fit agent that 
consumes more seeds is more likely to live longer and thus 
reproduce more, but this is not a guarantee. 

    The GA used in our model is most similar to a steady state 
GA, except that we do not use standard chromosome 
replacement, nor do we have a fixed population. Instead, old 
individuals die when out of energy and new individuals are 
added to the population via agent reproduction without regard 
to the overall population size. The population does have a soft 
maximum, as only so much food is generated each turn, but 
that is the only major limiting factor on the size of the 
population. 

VII. RESULTS 
    Following the testing methodology of previous work, 
initial tests were done to check the model [1]. These initial 
tests showed that the agent populations could evolve, 
optimize for the available food sources, and sustain a 
population only limited by the available number of seeds. 
During these initial tests the evolution of sight was disabled, 
and the agents were limited to a sensor distance of 1 at all 
times. 

    The main tests were designed to test the ability of the 
population to evolve sight and observe the effects of this 
evolution on the overall population. During these tests, seeds 
of random sizes were created throughout the grid and the 

population was allowed to inhabit the grid without obstacles 
or other considerations. The population was created by 
generating a random number of agents with random sizes and 
chromosomes. Initially, all agents started with their sight 
gene containing all 0s, resulting in a sensor distance of 1. 
During each test the model was run for 500,000 turns. 

    During the first test, the sight gene was set to contain 2 bits 
such that both bits would have to evolve to be 1 before the 
agent obtained sight.  In the first test, the cost for each sight 
bit of 1 was set at a 10% increase in energy consumption. 
These parameters were tested in 10 different trials and the 
agent population developed sight during every trial. The 
percentage of the population possessing increased sight 
rapidly climbed to 100% after sight initially evolved, 
however due to the increased energy cost this also resulted in 
an increased the average number of seeds consumed per agent 
and a drop in the total population and average number of 
children per agent. Fig. 3 shows the results of one of these 
trials. 

    In the second test, the number of sight bits was increased 
to 5, with the penalty per active sight bit being reduced to 
2.5%. With these parameters, the agent population developed 
sight once over the course of 20 trials. The effects of this 
evolution were largely similar to the effects during the first 
test, with decreased overall population and increased 
individual seed consumption. Fig. 4 shows the results of the 
successful trial with these parameters. 

    The third test increased the number of sight bits to 10 and 
the penalty reduced further to 1%. The agent population was 
unable to successfully evolve sight in any of the 40 trials 
performed. As an extension to this testing, these parameters 
were tested with a total model runtime of 2,000,000 turns for 
5 trials. Even with this increased runtime, the agents did not 
evolve sight in any of our trials. We believe that given enough 
time or enough trials, the agents may still evolve sight under 
these conditions, even with the complexity of this evolution 
being much higher. 

Fig 3. Graph of agent population over time during the first test. During this test the agents had a total of 2 sight bits and received a 10% penalty for each 
active sight bit. 



    It is interesting to consider the results of these three tests. 
In the first test, attaining sight required the mutation of 2 bits 
and a total detrimental effect of 20% in increased energy used 
per move, and sight evolved quickly. In the second test, 5 
mutations and a total detrimental effect of 12.5% was 
required, and sight evolved much slower. In the third test, 10 
mutations and a total detrimental effect of 10% was required, 
and sight did not evolve even with additional turns. This 
implies that the number of mutations required is more of a 
factor than the total detrimental effect. 

VIII. CONCLUSION 
    A key part of evolution is the ability to evolve new 
capabilities and traits, even if the intermediate steps to a 
positive result are detrimental. Our model has shown that the 
simulation of this aspect of evolution is possible given 
enough time to overcome the negative evolutionary pressure 
caused by the detrimental intermediate stages. 

    Additionally, our model does not rely on fitness to 
determine agent reproduction. The agents themselves 
determine their reproductive partners, without external 
pressure applied to encourage any specific choice or direction 
of evolution. Standard GAs display this behavior when 
overcoming local minima, but require some type of external 
fitness function to correctly optimize. In contrast, our model 
overcame the local minima of reduced sight and pushed 
through negative feedback to evolve increased sight without 
information regarding the fitness of any individual agent.  

    In terms of the overall population, the evolution of sight is 
clearly detrimental as it causes a higher consumption of a 
limited common resource. However, increased sight is highly 
beneficial for an individual, as it provides a competitive 
advantage over agents without increased sight and is 
necessary to compete with other agents that possess increased 
sight.  

    In future work, we would like to explore the idea of certain 
evolutionary choices having positive effects on individuals 
yet negative effects on the overall population. The addition of 

the possibility of teamwork, such as allowing agents to decide 
to share some energy with other agents, could align the 
evolutionary process more closely with the interests of the 
overall population. We also plan to use these results to 
improve our work in simulating speciation, the divergence of 
a parent species into multiple distinct new species, in order to 
create a more complete simulation of evolutionary processes. 
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