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Abstract— In order for evolution to populate the planet with
multiple species, two processes need to be at work. One is
speciation, which involves the development of a new
reproductively isolated species from an ancestral one. The other
is that a reproductively isolated species can evolve to be
more complex and potentially more capable over time. This
second process is what we address in the research reported in
this paper. One of the issues with developing individuals with
more complex attributes is that those attributes typically take
multiple mutations to be viable and before that point, the
changes made by mutations are often detrimental. In this
research, we use a simulated environment filled with simple
agents and a genetic algorithm operating on these agents, each
of which has its own set of chromosomes. We use this to test the
plausibility of the species developing more complex structures
(in this case sight) as the genetic algorithm population survives
and evolves over 1000s of generations. In order to better
simulate intermediate detrimental mutations, each mutation
results in an increased metabolic cost for the agent, leading to
higher energy expenditure with every movement or action
taken. Tests were done with differing number of mutations
required before sight was developed. The results showed that
evolution of complex attributes are possible depending on the
number of detrimental mutations required to make the attribute
an advantage to the agent.
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I. INTRODUCTION

The theory of evolution requires that new species can
develop from previous species and that species can evolve to
have increasingly complex attributes.  The goal of our
research is to use Genetic Algorithms (GAs) to model
evolution, so both of these requirements have to be addressed.
In previous research, it was shown that allopatric speciation
was possible in an environment of simple agents interacting
as they moved, ate food, and mated with each other [1, 2].
We are using the latest of the models used in this research to
experiment with the evolution of more complex attributes in
a population of a single species. One of the issues with
biological evolution is that complex structures such as wings
and eyes cannot form through a single mutation. Several
mutations are required, and in many cases, these mutations
result in the agent being less fit than agents without one or
more of these incremental mutations. We refer to this
temporary lowering of an organism’s fitness while evolving
a complex organ as a fitness valley [3]. For example, the first
step in evolving an eye would be to have an area of skin
sensitive to light. Although the evolution of an eye may be
advantageous and increase the fitness of the organism in its
environment, traversing through the fitness valley in this case
is probably also a liability since this area of skin is more
vulnerable to injury. In the case of a wing, the first notable
mutation would probably be a bump on the thorax, which

could eventually develop through mutations in further
generations to become a wing. However, this proto-wing
would most likely hinder the fitness of the organism until
further mutations were able to improve the use or efficacy of
the wing.

Over time, several models have been developed to address
the mechanisms of evolution previously discussed. One of the
earliest approaches, Tierra, introduced a system of self-
replicating digital organisms that compete for computational
resources [4]. This system notably involved no exogenous
fitness function, allowing the organisms in the environment
to demonstrate rudimentary concepts of artificial evolution in
silico. Shortly after, Avida expanded on this concept,
providing a more structured framework for studying adaptive
evolution through controlled experiments [5]. These models
primarily focused on microevolutionary processes,
emphasizing mutation and selection within relatively simple
environments, and were highly effective at demonstrating
adaptation but limited in their ability to explore complex
traits that require overcoming fitness valleys. Following these
foundational models, the Tangled Nature Model introduced a
more ecological perspective by simulating evolutionary
dynamics within complex adaptive systems, allowing for the
study of species interactions and the role of
macroevolutionary processes in shaping biodiversity [6].
This model laid the groundwork for understanding how
populations traverse adaptive landscapes with multiple peaks
and valleys, but like its predecessors, it did not focus on the
evolution of complex, multi-step traits within individual
organisms. More recent advancements, such as Aevol,
extended the capabilities of these early systems by
incorporating modular genomes, enabling the evolution of
more sophisticated phenotypes [7]. This model was one of the
first to investigate how genetic regulatory networks could
facilitate the traversal of fitness valleys, making it possible
for digital organisms to evolve traits with multiple interacting
components. Building on these efforts, LaBar & Adami
examined how complex traits could evolve in rugged fitness
landscapes, focusing on genetic interactions and
environmental variability [8]. Similarly, Arthur et al. applied
digital evolution to investigate how functional capabilities
arise and contribute to speciation under various selection
pressures, demonstrating how small genetic changes can
accumulate to form complex traits [9]. Despite these
advancements, most of these models do not specifically
address the evolution of complex organs that require
overcoming fitness gaps through incremental mutations, as
the algorithms were often geared towards optimizing simpler
adaptive traits. Our research aims to address this gap by using
GAs to simulate the effects of the step-by-step development
of complex attributes, such as sight, within a controlled
environment.



In our research, we use the environment previously
developed to investigate the evolution of “sight” in digital
organisms. While earlier versions of this environment only
allowed agents to detect adjacent spaces, our experiments
focus on agents evolving to sense two squares away from
their position. This progression towards increased sensory
capacity requires multiple mutations, each of which incurs an
energy cost, simulating the incremental and often detrimental
nature of intermediate evolutionary steps. This is not to say
that we develop the mechanism for increased
complexity/information to enter the chromosome. How that
happens is still an open question. What we do is create a
mechanism within the existing chromosome for mutations to
create the stepping-stones for advanced features. We
conducted a series of tests to determine how varying the
number of required mutations and their associated energy
costs impacted the likelihood of evolving sight. The results
demonstrate that under the right conditions, even multi-step
adaptations with an associated cost can evolve and become
advantageous, confirming that complex traits can emerge
depending on the evolutionary pressures and the structure of
the fitness landscape.

As the learning system used in our environment, GAs are
designed to emulate natural selection and have traditionally
been used to find optimal arrangements of gene sequences to
solve specific computational problems [10]. However, most
standard GAs are limited in their ability to simulate the
gradual emergence of new complexities or morphological
traits in evolving agents. Some approaches, like
NeuroEvolution of Augmenting Topologies (NEAT),
introduced by Stanley and Miikkulainen, address the
evolution of complex neural architectures that can enhance
an agent’s control systems [11]. NEAT allows for the
incremental evolution of increasingly sophisticated neural
networks, utilizing genetic crossover and mutation to add
new nodes and connections. This work has made significant
strides in creating advanced control systems, but its primary
focus is on neural evolution rather than the development of
new physical attributes or morphological complexity.

Similarly, Genetic Programming (GP), introduced by John
Koza, evolves tree-like structures to solve problems by
modifying the programmatic logic of agents [12]. While GP
has been successful in evolving complex, hierarchical
solutions, it does not inherently support the stepwise
formation of physical traits that require overcoming fitness
valleys. Each of these systems introduces mechanisms for
increasing control complexity but lacks a structured way to
evolve complex traits that have an initially detrimental effect
on an agent’s fitness. In our work, we address this limitation
by focusing on the physical evolution of a sensory organ,
demonstrating how complex attributes can emerge through
incremental mutations, despite the associated temporary
reduction in fitness.

This work is based on a model previously created by Parker
and Nash [2], which is being rewritten for release as a
standalone research environment. However, the Java source
code for the model is currently available upon request.

II. ENVIRONMENT

The model uses a grid based representation of the
environment, over which agents can move, eat, and interact
with each other. This representation was chosen as it is simple
enough to minimize confounding factors outside agent’s
direct control, yet complex enough such that evolution could
occur in a natural way. Additionally, using a grid allows us to
easily modify the size of the environment and observe if
results are consistent over different environment sizes.

The grid consists of discrete blocks (spaces) which can
either be empty or occupied by some entity. In the research
reported in this paper, the spaces can be occupied by either
food (seeds) or the agents themselves. Seeds are randomly
generated in the grid as time progresses, and act as a food
source for the agents. These seeds can be of various sizes
(small, medium, large) and are represented visually as
squares of varying sizes. Agents are initialized randomly and
are represented by circles of varying size and colors. The
color is defined by the agent's genome and the size is defined
by the size of the agent, which is inherited separately from
the genome.

The environment progresses based on time cycles (turns).
During each turn a single action is performed by each living
agent. Additionally, food is generated randomly on the grid
each turn. The number of turns passed from the initial state
of the grid is said to be the age of the environment, similarly
the number of turns an agent has survived is said to be the age
of that agent. Visual examples of this environment can be
found in previous work [2].

III. AGENTS

Agents are the evolving entities in our environment and the
only entity on the grid that is able to move between spaces.
The only restriction placed on their movement is that they
cannot move to a space already occupied by another agent. If
two agents are adjacent to each other, they may interact. In
the current model, the only interaction available between
agents is reproduction. As the agents may reproduce freely,
the total number of agents present on the grid is variable as it
may increase or decrease depending on the actions of the
agents, the amount of seeds available, and the current
population size.

The most impactful trait of an agent is its size, as this
dictates the type of seed the agent is best suited to consume.
Large agents prefer larger seeds, whereas smaller agents
prefer smaller seeds. Thus, the size of an agent directly affects
how well it will perform in the environment.

Seeds provide the agents with energy when eaten, the
amount of energy depending on both the size of the agent and
the size of the seed [2]. Agents also lose a certain amount of
energy each turn, the amount lost being equal to the square
root of their age. The amount of energy an agent loses each
turn can be modified and such modifications to the energy
burn rate are discussed later in this paper.

An agent starts with 100 initial energy. As the agent
performs actions, it burns energy passively. The only other
source of energy consumption is reproduction, which carries
an additional cost of 80 energy. This cost is only levied when
reproduction results in the production of a child agent, since



if both parent agents agree to reproduce there is no chance of
failure. Conversely, if either parent decides not to reproduce
or does not have enough energy to reproduce, then there is no
chance of reproduction. As the agents age, energy
consumption increases, meaning that agents must reproduce
in order to maintain a stable population. Older agents are
unable to consume enough food to cover their energy burn,
even if they eat a seed on each turn. Therefore, while agents
have variable lifespans, there is an upper limit to how long an
agent can survive.

Other agent traits, such as the agent controller, secondary
traits, and reproductive preferences, are stored in
chromosomes. An action chromosome informs the agent
controller, discussed later, of the priorities for that agent. A
reproductive choice chromosome determines possible mates
for that agent, such as preferred color, age, and phenotype.

Notably, the reproductive choice chromosome does not
consider the size of a possible mate. This is because size
directly affects fitness, and the agents should choose mates
based on their own preferences rather than a pre-defined
fitness. The phenotype chromosome contains a series of traits
that are solely used for determining if an agent is an
acceptable mate by the reproductive chromosome, as well as
the sight gene. The specifics of the sight gene are discussed
in that respective section.

IV. AGENT SIGHT

During the initialization of the environment, all starting
agents are created with a sight range of 1. Therefore, these
agents are only able to see spaces directly adjacent to them.
These initial agents have their sight gene set to contain only
0 bits, representing a base state before any evolution has
occurred. Over time, the agents may mutate during
reproduction and gradually change these 0 bits to 1. As more
bits in an agent’s sight gene become 1, indicating an
intermediate internal body change, more energy is required
for the agent to move, so it loses more energy each turn. The
functional change in an agent’s sight is shown in Fig 1.

The increase in energy paid per bit, set as a hyperparameter
before each test, scales linearly with the number of bits that
become 1. This energy cost represents the cost of
intermediate detrimental mutations that are often required in
nature as more powerful senses are developed. In addition,
more powerful eyes consume more calories and thus consume
more of an organism’s energy.

Fig. 1. Agents initially have a sight of 1, denoted by the green tinted
squares. Once the agent evolves to attain a sight of 2, it is able to see the
yellow tinted squares. If this medium agent had evolved sight, it’s best move
would be to move left or up, in order to get closer to the medium seed. If it
had not evolved sight, it would likely move right, in order to consume the
large seed, regardless of the lesser energy payoff.

If an agent has a sight gene containing all 1s, then that
agent has evolved to have a sight range of 2. These agents are
able to see spaces up to 2 blocks away from them, using
blockwise distance. An agent does not benefit from having a
sight gene containing a mix of Os and s, all of the sight bits
must be activated for the agent’s sight to increase. Agents
must accept some cost as they evolve sight, as they do not
develop sight or receive any advantage after one random
mutation. Instead, sight requires multiple mutations, each
with a cost, evolved over many generations until full sight is
achieved.

V. AGENT CONTROLLER

Each turn, the agent controller will use the values in an
agent’s action chromosome to determine the actions of that
agent during that turn. Agents have access to a variety of
actions although some actions may be unavailable. During
each turn, the immediate surroundings of an agent are
analyzed to determine the action the agent should take.

The method for determining an agent’s action differs from
previous work using a similar model, as with the addition of
sight the previous controller is no longer sufficient.
Previously, each agent would try every action starting from
the action with the highest priority. Once an action
succeeded, the agent had finished its turn. However, with the
addition of sight the agents must also consider direction, as if
a high priority action could be taken after a turn of movement,
it should begin moving in that direction. An example of this
is shown in Fig. 2.

Instead of trying actions from highest to lowest priority,
the agent observes the spaces around it (to a distance equal to
the sight length of that agent) and determines a direction with
the highest priority. This direction does not mean that a high
priority action is immediately available in that direction, only
that choosing that direction would either result in a high
priority action or moving closer to a high priority action.
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Fig.2. This agent would consider the upwards direction to contain a
medium seed and a medium agent, the leftwards direction to contain a
medium seed and a small seed, with the other directions not containing items
of as high interest to a medium agent. If the agent highly prioritized
reproduction, it would assign a higher priority to the upwards direction than
the leftwards direction, as there is another medium agent in this direction,
and use it’s turn to step upwards.

Once the agent chooses a direction, it then attempts to
move in that direction. If there is another agent blocking that
move, the agent then determines if it is willing to reproduce
with that agent, attempting reproduction if so. If the move is
successful, the agent then determines if there is a seed present
on its new space. If so, the agent determines if it should eat
that seed or not before its turn ends, if no seed is present the
agent’s turn ends immediately.



VI. GENETIC ALGORITHM

The priorities assigned by the agents to each action, the
reproductive preferences, the agent’s phenotypes, and the
sight gene for each agent are all specified and evolved by a
GA. The agents pass down their characteristics to their
children via genetic operations on the parents’ chromosomes.

The selection process is entirely determined by the agents
instead of a fitness function; if two agents are adjacent to each
other and their reproductive preferences are met by the other
agent, then they are able to reproduce. The idea of selection
based on agent fitness does not fully apply here, as any agent
can reproduce with any other agent. A more fit agent that
consumes more seeds is more likely to live longer and thus
reproduce more, but this is not a guarantee.

The GA used in our model is most similar to a steady state
GA, except that we do not use standard chromosome
replacement, nor do we have a fixed population. Instead, old
individuals die when out of energy and new individuals are
added to the population via agent reproduction without regard
to the overall population size. The population does have a soft
maximum, as only so much food is generated each turn, but
that is the only major limiting factor on the size of the
population.

VII. RESULTS

Following the testing methodology of previous work,
initial tests were done to check the model [1]. These initial
tests showed that the agent populations could evolve,
optimize for the available food sources, and sustain a
population only limited by the available number of seeds.
During these initial tests the evolution of sight was disabled,
and the agents were limited to a sensor distance of 1 at all
times.

The main tests were designed to test the ability of the
population to evolve sight and observe the effects of this
evolution on the overall population. During these tests, seeds
of random sizes were created throughout the grid and the

population was allowed to inhabit the grid without obstacles
or other considerations. The population was created by
generating a random number of agents with random sizes and
chromosomes. Initially, all agents started with their sight
gene containing all Os, resulting in a sensor distance of 1.
During each test the model was run for 500,000 turns.

During the first test, the sight gene was set to contain 2 bits
such that both bits would have to evolve to be 1 before the
agent obtained sight. In the first test, the cost for each sight
bit of 1 was set at a 10% increase in energy consumption.
These parameters were tested in 10 different trials and the
agent population developed sight during every trial. The
percentage of the population possessing increased sight
rapidly climbed to 100% after sight initially evolved,
however due to the increased energy cost this also resulted in
an increased the average number of seeds consumed per agent
and a drop in the total population and average number of
children per agent. Fig. 3 shows the results of one of these
trials.

In the second test, the number of sight bits was increased
to 5, with the penalty per active sight bit being reduced to
2.5%. With these parameters, the agent population developed
sight once over the course of 20 trials. The effects of this
evolution were largely similar to the effects during the first
test, with decreased overall population and increased
individual seed consumption. Fig. 4 shows the results of the
successful trial with these parameters.

The third test increased the number of sight bits to 10 and
the penalty reduced further to 1%. The agent population was
unable to successfully evolve sight in any of the 40 trials
performed. As an extension to this testing, these parameters
were tested with a total model runtime of 2,000,000 turns for
5 trials. Even with this increased runtime, the agents did not
evolve sight in any of our trials. We believe that given enough
time or enough trials, the agents may still evolve sight under
these conditions, even with the complexity of this evolution
being much higher.
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Fig 3. Graph of agent population over time during the first test. During this test the agents had a total of 2 sight bits and received a 10% penalty for each
active sight bit.



Agent Population Statistics - 5 Sight Bits - 2.5% Penalty
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Fig 4. Graph of the agent population that successfully developed sight over time during the 16 trial of the second test. During this test the agents had a
total of 5 sight bits and received a 2.5% penalty for each active sight bit.

It is interesting to consider the results of these three tests.
In the first test, attaining sight required the mutation of 2 bits
and a total detrimental effect of 20% in increased energy used
per move, and sight evolved quickly. In the second test, 5
mutations and a total detrimental effect of 12.5% was
required, and sight evolved much slower. In the third test, 10
mutations and a total detrimental effect of 10% was required,
and sight did not evolve even with additional turns. This
implies that the number of mutations required is more of a
factor than the total detrimental effect.

VIII. CONCLUSION

A key part of evolution is the ability to evolve new
capabilities and traits, even if the intermediate steps to a
positive result are detrimental. Our model has shown that the
simulation of this aspect of evolution is possible given
enough time to overcome the negative evolutionary pressure
caused by the detrimental intermediate stages.

Additionally, our model does not rely on fitness to
determine agent reproduction. The agents themselves
determine their reproductive partners, without external
pressure applied to encourage any specific choice or direction
of evolution. Standard GAs display this behavior when
overcoming local minima, but require some type of external
fitness function to correctly optimize. In contrast, our model
overcame the local minima of reduced sight and pushed
through negative feedback to evolve increased sight without
information regarding the fitness of any individual agent.

In terms of the overall population, the evolution of sight is
clearly detrimental as it causes a higher consumption of a
limited common resource. However, increased sight is highly
beneficial for an individual, as it provides a competitive
advantage over agents without increased sight and is
necessary to compete with other agents that possess increased
sight.

In future work, we would like to explore the idea of certain
evolutionary choices having positive effects on individuals
yet negative effects on the overall population. The addition of

the possibility of teamwork, such as allowing agents to decide
to share some energy with other agents, could align the
evolutionary process more closely with the interests of the
overall population. We also plan to use these results to
improve our work in simulating speciation, the divergence of
a parent species into multiple distinct new species, in order to
create a more complete simulation of evolutionary processes.
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