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Abstract— In this research, we evolve gaits for an arachnid-

inspired robot. The method used is an expansion upon previous 

research on the incremental evolution of gaits for hexapod 

robots with two degrees of freedom per leg, which we now apply 

to a more complex, eight-legged robot with three degrees of 

freedom per leg. Incremental evolution handles gait generation 

for legged robots in two discrete increments. The first increment 

uses a cyclic genetic algorithm to learn the activations (pulse 

instructions to the servos) required for each leg to perform a 

single-leg cycle. This learning program takes into account the 

way each leg is mounted on the body and the range of movement 

provided by the three servos on each leg to produce a smooth, 

straight and efficient leg cycle. The second increment uses a 

genetic algorithm to select the best combination of leg cycles for 

each leg and to learn the timing to execute each leg cycle to 

coordinate them all together into a single gait. In this work, we 

learn the gait incrementally in a simulation and transfer the final 

gaits to the real robot to confirm the method’s viability. 

I. INTRODUCTION 

The development of legged robots is very important 
because they have multiple advantages over their wheeled 
counterparts including better stability and adaptability in harsh 
terrains. Gait generation plays an important part in the 
development of legged robots. Manually creating commands 
for legs with multiple degrees of freedom is difficult and even 
if successful is unlikely to produce an optimal gait that makes 
the most of the capabilities of the robot. In this research, we 
take inspiration from nature to produce efficient gaits for an 
eight-legged, bio-inspired, arachnid robot with three degrees 
of freedom per leg. While we do not use a bio-inspired 
controller, we predict the bio-inspired morphology of the robot 
will influence the learning algorithm into creating a gait 
similar to that of a biological spider. 

The robot's capabilities need to be taken into consideration 
when generating a walking cycle to make the best use of its 
unique specifications. Here we break the gait into two discrete 
parts to help with gait generation: the cyclic motion of each leg 
and the coordination of all the legs together into one smooth 
gait.  The leg cycles for each leg are controlled by a 
microprocessor assigned to that leg, which is similar to 
biological spiders that have nerve ganglia associated with each 
leg.  Signals from a central processor to these leg processors 
produces the resultant gait. 

The robot in this work uses servos for actuators, which 
require a pulse that dictates their exact position within the 
physical range of each servo’s sweep. However, each pulse 
may need to have different durations to account for the actual 
movement speed of each servo. If two pulses in sequence are 
too far apart in value they may be instructing the servo to move 
further than it is physically capable of in just one pulse. 
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Instead, a sequence of smaller pulse increments between two 
pulses is required to produce a smooth and accurate motion, 
which can then be looped to produce a movement cycle for one 
leg. 

Using learning methods for gait generation has been a topic 
of research over the past several years. Recent works have used 
Deep Reinforcement Learning (DRL) to learn efficient 
hexapod gaits for legged robots with more than two degrees of 
freedom per leg [1]; however, the reward functions have a high 
degree of complexity due to the number of degrees of freedom. 
Learning and adjusting the reward function thus takes a 
substantial amount of time and computing power in addition 
to the time and computing power spent learning the problem 
itself after the hyperparameters have been refined. However, 
subsequent work has focused on speeding up the DRL process 
to mitigate these disadvantages [2]. Other works have used 
Central Pattern Generation (CPG) which takes inspiration 
from the way sensory-motor nervous systems of real-life 
insects handle walking [3]. While this method does make it 
possible to generate a very natural gait with fewer parameters, 
the a priori domain knowledge required to use this method is 
larger than other approaches. Further works have combined 
these approaches. Shafiee et al. combined DRL with CPG to 
reduce the complexity of the reward function, sensors, and 
hyperparameters. These two methods combined however still 
have the disadvantage of needing a lot of prior knowledge [4]. 

We use an incremental learning approach using a cyclic 
genetic algorithm because the design of the algorithm, 
chromosomes and fitness functions are simple, the training 
time is fast and it requires minimal a priori knowledge. The 
few design choices we made that incorporated prior 
knowledge were for reducing the complexity to allow the 
controller to learn faster while still giving it enough learning 
space to cover all possibilities. A cyclic genetic algorithm 
(CGA) is a variation of the standard GA in which the 
chromosome is a series of instructions in a loop which can also 
have a tail of instructions on either end where pre and post-
cycle procedures can be executed. In our version, we only use 
the loop with no tails. We omit the start section because it was 
found in prior CGA research that it provided little benefit [5] 
and we omit the end section because in this research our goal 
is to produce a sustained forward gait. The final chromosome 
for each leg contains the cycle of pulses that when executed 
produce a walking cycle for one leg. 

Past work has shown that efficient gaits for hexapod and 
arachnid robots with two degrees of freedom per leg can be 
learned using a CGA [6,7]. In these works the pulse widths 
sent to the servos were not learned, just the general directions 
of up/down and back/forward. Incremental learning of the 
more complex controllers involving the need for sequences of 
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pulse instructions to the servos has been used for a hexapod 
robot with two degrees of freedom per leg [8]. In this paper, 
we aim to expand on this gait generation work by using 
incremental learning and a CGA to learn the walking gait of 
an eight-legged robot with three degrees of freedom per leg. 
The CGA is used to learn eight controllers each controlling 
three servos to produce the leg cycle of one of the eight legs. 
A GA is then used to learn one controller which controls the 
timing with which each leg cycle should be executed to 
organize a coordinated gait. Tests in simulation and on the real 
robot confirm the viability of this method for producing gaits. 

II. ARACHNID GAITS 

Biological spiders use their eight legs to achieve the ability 
to climb over obstacles and to continue stable movement even 
after damaging one or two of their legs. These traits are 
desirable in legged robots, which is why we will strive to 
replicate them. We also want to mimic the speed and stability 
of spider gaits. In research done on spider gaits [9] it was found 
that the gait pattern in spiders remained constant as velocity 
increased and decreased. The velocity of the spider is 
controlled in proportion to the stride frequency whereas stride 
length has little effect on the final velocity of the spider. The 
gait used by the spider is the alternating tetrapod gait which 
consists of two groups of legs being on the ground at any given 
time. These groups are L1,R2,L3,R4 and R1,L2,R3,L4 as 
shown in Fig. 1. This gait pattern ensures the center of mass of 
the spider is within the perimeter of the large quadrilateral 
made by the legs and effectors on the ground. Fig. 2 shows the 
gait used by biological spiders, which we assume is optimal, 
so we predicted that the gait pattern learned for our robot will 
be the same since this gait is energy efficient, fast and stable. 

 

Figure 1.  Top-down view diagram of the robot and its eight legs, labeled L 

(left) or R (right) and then 1-4 from front to back. 

 

Figure 2.  Alternating tetrapod gait used by biological spiders. 

III. THE ROBOT 

The robot used in this research was developed in the 
Connecticut College Autonomous Agent Learning Lab by 
Sarah Dashnaw for experiments with arachnid gaits and is 
shown in Fig. 3. It is a custom-made eight-legged robot 
inspired by the ServoBot which was used in previous gait 
generation research [6]. The ServoBot is a hexapod robot with 
twelve servos and thus two degrees of freedom per leg which 
provides thrust and vertical movement. Like the ServoBot, this 
eight-legged robot design is inexpensive and easy to assemble. 
It also requires that the vertical servos need the legs at the 
extremes of their throw (fully up or fully down) to hold the 
weight of the robot. In addition, the servos are not strong 
enough to forcefully lift the robot from a fully down position 
to a fully up position unless more than half the legs are on the 
ground. This means an energy-efficient and balanced gait is 
required for the robot to move without collapsing under its 
weight. This robot differs from the ServoBot in that it has eight 
legs, 24 servos, and thus three degrees of freedom per leg, and 
the legs are placed radially on an elliptical body (instead of in-
line on a rectangular body) to mimic biological spiders.  The 
developer chose to place the legs radially to emphasize the 
importance of the third degree of freedom, the 
extension/contraction degree, in the generation of straight 
movement on the ground. If this third degree of freedom is not 
exploited by the cyclic genetic algorithm, the radial nature of 
the placement of the legs would cause the final gait to rotate 
the robot resulting in an inefficient gait.  

There are certain advantages to eight-legged robots 
compared to their six-legged and four-legged counterparts. 
They can maintain better static stability at high speeds due to 
being able to have four legs on the ground at any given time 
and they can still maintain static stability even if one or two 
legs are broken or missing. On the other hand, disadvantages 
include having more moving parts and thus being harder to 
build and maintain, and the extra control instructions added by 
two more legs and increased degrees of freedom add 
complexity to the learning process. 

The robot is controlled by eight BASIC Stamp 2s, one for 
each leg, and a central BASIC Stamp 2p40 to coordinate the 
timing of the legs. Each leg’s controller can store a sequence 
of pulses to be executed on its respective leg’s three servos. 
The central controller then sends signals to each of the eight 
leg controllers instructing them when to start their sequences  



  

 

Figure 3.  Images showing the robot’s construction and circuitry. 

and restart their sequences, whether it is after the sequence has 
ended or if it is early and the sequence gets cut short. 

The servos can be set to specific angular positions by 
sending a 10 to 1,250-microseconds-long control pulse. This 
pulse needs to be repeated every 25 milliseconds to continually 
control the servo motors. If the angular position between two 
consecutive pulses is too different, the servo cannot move the 
leg fast enough to reach the desired position within one pulse. 
The speed of the movement can be controlled by incrementally 
changing the length of control pulses sent to the servos. For 
example, a set of pulses such as 70, 75, 80, 85, and 90 would 
make the servo move slower from 70 to 90 than if we’d used 
control pulses 70, 80, and 90. Each servo is also unique in 
regards to what pulse corresponds to what position. Some may 
have a full back position at a pulse length of 200 microseconds 
while others may be fully back with a pulse length of 20 
microseconds. We must account for the peculiarities of each 
servo and their maximum speed in our learning algorithm and 
control program. 

IV. CYCLIC GENETIC ALGORITHMS 

The Cyclic Genetic Algorithm (CGA) is a variation of the 
Genetic Algorithm (GA). Instead of using the chromosome’s 
genes as a list of characteristics of the solution, the CGA 
incorporates time into the chromosome and uses each gene as 
a task to be executed in order. A loop can then also be 
incorporated over a portion of the chromosome creating a 
cycle. This makes a sequential program with a start section, 

iterative section and stop section. These differences are 
illustrated in Fig. 4. For our problem, we only made use of the 
iterative section. 

V. FIRST INCREMENT: EVOLVING LEG CYCLES 

Our CGA needs to learn eight sequences of pulses that can 
be transferred to PBASIC programs, uploaded to the eight 
BASIC Stamp 2s, and then looped on each stamp. We chose 
to use fixed-length chromosomes as they are more compatible 
since similar genes are more likely to correspond to similar 
tasks. We also made some adjustments to the representation 
of the pulses, as being accurate to 1 microsecond in a 10 to 
1,250-microsecond range was unnecessary. Pulses that 
differed by less than 10 microseconds were virtually 
indistinguishable from each other, so we chose to have our 
chromosome represent pulses in 10 microsecond increments. 
The final range was then determined to be 1-125 for each 
servo. This can then be represented by a 7-bit number and so 
a single signal to all three servos can be represented by a 21-
bit number. We also found that the total number of pulse 
signals required to go from the minimum throw to the 
maximum throw was around 100. To allow for the learning 
algorithm to also be able to instruct one gene to move the full 
throw at a slower pace we decided to set the range of 
repetitions to be 0 to 310 in 10 pulse signal increments which 
can be represented by a five-bit number. We chose 310 as the 
new maximum number of repetitions so as to allow the 
controller to be able to execute up to approximately ⅓ times 
slower movements to increase the portion of time the leg 
spends on the ground and to allow the vertical servo, which 
always moves at maximum speed, to instruct the leg to 
approach and leave the ground at steeper or shallower angles 
to mitigate negative thrust. 

Smooth movement is required for the horizontal and 
extension/contraction servos to avoid harsh movements and 
to maintain a stable and straight gait. A smooth movement can 
be achieved by spacing the intervals of pulses between two 
control pulse instructions evenly i.e., instead of having 
intervals of pulses like 10, 40, 50, 100 we would instead space 
them evenly like 25, 50, 75, 100.  We account for this in our 
learning algorithm and the final controller by taking the two 
consecutive control pulses and dividing them up into  

 

Figure 4.  A GA chromosome compared with a CGA chromosome. 

several evenly spaced pulses equal to the number of repetitions 
for that instruction, allowing the system to avoid exceeding the 



  

servos’ maximum speed measured in change in pulse length 
per pulse. To do this we use (1). We do not learn this 
smoothness in the cyclic genetic algorithm because it is trivial 
to implement an interpolation function in the simulation and 
the final controller. The design goal for our chromosome is for 
it to learn what position the servos should move to next and 
how quickly that movement should be done, not the 
smoothness of each movement. 

pulse increment = min[(horizontal pulse – previous 
horizontal pulse)/repetitions, max speed] 

We do not need smoothness on the vertical servo since it 
does not affect the robot’s movement and so the vertical servo 
will always move at its maximum speed. Note also that we 
use the term “repetitions” in our chromosome to refer to the 
number of steps one move should take to complete.  A more 
accurate term for the horizontal and extension/contraction 
movements would be “interpolation steps”, but we choose to 
use repetitions because all the previous papers involving 
cyclic genetic algorithms used repetitions to refer to the steps 
and we wish to keep the this terminology consistent. 

We based our chromosome, shown in Fig. 5, on the design 
used in previous work [6]. Each gene is structured the same 
and is made up of repetitions and pulses. However, we made 
three key differences. We have added a third pulse, the 
extension pulse, to each gene in order to control the third 
extension/contraction degree of freedom per leg. In addition, 
we have increased the length of the repetitions part to range 0-
31 represented by five bits to allow more movement to be 
achieved in one instruction due to the increased size of the 
robot and therefore the increased range of its motion. Finally, 
we chose to use a total of four genes instead of the original 
eight because it was found that half of the genes would learn 
to set their repetitions to 0 and be unused. In other words, four 
genes were sufficient to represent the instructions to the servos 
to produce a good leg cycle. These decisions on the max 
number of repetitions, the number of genes, and the pulse 
signal increments of 10 represent the extent of the a priori 
knowledge we used. Since each gene would individually be 
longer, we decided to cut down on the number of genes to keep 
chromosome length roughly the same without compromising 
on the freedom of the learning algorithm to learn. The final 
chromosome ends up being 104 bits long. 

The final chromosomes resulting from the training can be 
uploaded directly to their respective leg’s stamp and when 
executed would execute the instructions sent to the three 
servos. A set of pulses made by an example chromosome is 
shown in Fig. 6. 

 

[[R1,HP1,EP1,VP1],[R2,HP2,EP2,VP2],[R3,HP3,EP3,VP3],
[R4,HP4,EP4,VP4]] 

Figure 5.  Leg cycle chromosome. Each of the four genes is made of three 

parts: repetitions (R), horizontal pulse (HP), extension pulse (EP) and vertical 

pulse (VP). 

 

Genes 
Horizontal 

Pulse 

Extension 

Pulse 

Vertical 

Pulse 

[6, 125, 20, 0] 40 55 0 

 57 48 0 

 74 41 0 

 91 34 0 

 108 27 0 

 125 20 0 

 [3, 68, 62, 100] 106 34 100 

 87 48 100 

 68 62 100 

[3, 23, 62, 42 ] 53 62 42 

 38 62 42 

 23 62 42 

Figure 6.  A sequence of pulses generated by looping three example genes. 

In bold are the pulses dictated by the genes with all the other pulses being in-

between pulses in even steps. The exception is for the vertical pulses since 
the vertical servo will always move at maximum speed. Due to the cyclic 

nature of the chromosome, [40, 55, 0] is not the starting position of the servos 

but the next step after [23, 62, 42]. The servos could start in any position and 

eventually converge to this pulse set after enough loops. 

A. Leg Model 

Each leg’s capabilities were measured and the data was 
stored in a simple model of the leg that held the leg’s current 
position and its previous position along with the capability 
data. Each position consisted of a horizontal, extension and 
vertical component. Each horizontal component was defined 
as 0 when the leg was fully forwards and its maximum throw 
was fully backwards. The extension component was defined 
as 0 when the leg was fully inwards and closest to the body 
and its maximum throw was fully extended. The vertical 
component was defined as 0 when the leg was fully down and 
its maximum throw was when it was fully up. The ranges of 
all the maximum throws were measured and stored in the 
model.  

We also had to account for the fact that a vertical position 
of 1 was still touching the ground and in fact, a higher vertical 
position was required before it stopped dragging. This was 
measured and stored as a “ground level” constant that the 
vertical component had to exceed before the leg was 
considered to be off of the ground.  

In addition, we had to account for the fact that the 
movement per pulse of the leg would decrease as it approached 
the extremes of its throw. Previous research handled this with 
a lookup table, however, the extra degrees of freedom and the 
extra two legs made this method impractical as the number of 
measurements we would have to take would be too time-
consuming when there are quicker and comparable methods to 
use. 

Instead, we analyzed the general movement of the servos 
and noted that they had fairly consistent performance for the 
middle chunk of their throw. We used this information to focus 
our measurements on the extremes of the throw and analyzed 
how the distance moved per pulse sharply decreased. We then 
took measurements and generalized them using a curve fitted 
to these measurements which the model can use to determine 
how much it can move at the extremes of its throw. This 
provided a sufficient level of accuracy for our model. 



  

B. Training 

We used a population of 128 chromosomes for each leg 
with each chromosome representing a single leg cycle. Our 
goal was to produce eight different populations each 
generating a leg cycle for a single leg. We trained each 
population for 1,000 generations on their respective leg 
models.  

We used a different fitness function from past research to 
account for some of the changes we made to the chromosomes 
and to improve the final gait based on the findings found in 
past research. Our final fitness function took into account the 
effective thrust of each leg, which depends on the forward 
movement of the leg, how straight the leg moves and the 
vertical position of the leg. Forward movement was calculated 
by taking the distance the horizontal degree moved while it 
was on the ground, whether it was positive or negative. We 
did this despite there being a third degree of freedom 
contributing to the movement because the horizontal degree 
still provides most of the thrust while the extension degree 
mostly works to ensure the leg remains straight throughout its 
throw. 

In addition to forward movement, our fitness function 
included straightness and height. Straightness was calculated 
by taking the exact position of the leg before and after moving 
along the ground and taking the absolute value of how parallel 
the movement was to the direction of travel. Lower 
straightness values were better, so we subtracted them from 
the fitness function. Height was just retrieved from the leg 
model’s position as the vertical extension above the ground. 
We added this because our model now accounts for the fact 
that the leg is actually touching the ground over a range of 
values from 0 to our measured “ground level”. We can use 
this information to represent the fact that the lower the leg is 
extended downwards the more weight is put on that leg and 
therefore more friction is produced by that leg which results 
in a more effective horizontal movement. Inversely, negative 
movement is also less detrimental when the leg is higher up 
and only barely touching the ground. 

To represent this inverse relationship between the grip and 
the vertical extension while it's below the “ground level” we 
simply divide the effective thrust by the current up position 
(plus 1 to avoid division by 0). It is also important to note that 
no fitness is added while the leg is in the air since forward 
movement and straightness are both 0 when the leg is not 
touching the ground. This culminated in the following formula 
for calculating the effective thrust: 

thrust = (forward movement – straightness)/(up 
position+1) 

The fitness for each chromosome was calculated once per 
gene as the chromosome was looped through 100 times to 
ensure a cyclic behavior was learned. The best chromosomes 
would learn to reset their positions at the end of the cycle so 
that the next loop would be ready to start again. The fitness 
was then used to stochastically select chromosomes to 
produce each new generation. We used uniform crossover at 
a 100% crossover rate, and we used two types of mutation - 
inter-gene and intra-gene mutation. Inter-gene mutation resets 
an entire gene to a random gene while intra-gene mutation 
only flips a single bit at a time. After the selection, crossover, 

and mutation were performed, the population would be 
subjected to a cleanup function which would take any genes 
with zero repetitions and move them to the end of the 
chromosome. This was to ensure that any learning that 
resulted in not using all the genes would not be lost 
immediately during crossover.  

C. Results 

Training was done over 200 generations with the fittest 
individuals saved every 5 generations. The results are shown 
in Fig. 7.  Each solid line represents a leg. All legs learned 
quickly and settled at an optimal fitness matching their 
opposite leg i.e. legs L1 and R1 had similar fitnesses and legs 
L2 and R2 had similar fitnesses. We found the total optimal 
lengths of the leg cycle to be in the range of 19-22 repetitions. 
We then repeated the training to prepare for the second 
increment of learning described in the next section. We added 
a new component to the fitness function called “desired 
length”. Desired length was calculated as the absolute value of 
the total repetitions in the chromosome subtracted from an 
inputted desired number of repetitions. The lower the number 
the higher the fitness so desired length was subtracted from the 
total fitness. The length used was 22 repetitions since that was 
the maximum optimal length found after the initial training. 
We chose the maximum optimal length because a longer leg 
cycle would be more useful in further experimentation. 

The results of the new training are shown in Fig. 8. Since 
an optimal cycle length was specified, all the legs learned 
rapidly at the beginning of the training and most of them 
settled quickly on a near-optimal solution. We tested the 
results on the real robot and we observed that at 22 repetitions 
all legs produced efficient and straight leg cycles with plenty 
of clearance above ground level. However, at this point, we 
could not measure how far these legs could walk before we 
coordinated the movement together into a gait.  

 

Figure 7.  Training results for all eight legs learning their own individual leg 

cycle. 



  

 

Figure 8.  Single leg training with a desired length of 22 repetitions 
specified. Although the legs do not produce more forward thrust than those 

shown in Fig. 7, the fitness values are much higher due to the incorporation 

of the “desired length” into the fitness function 

VI. SECOND INCREMENT: EVOLVING GAITS FROM THE LEG 

CYCLE 

The key to incremental learning is the observation that any 
uniform gait for a legged robot is just the coordination of each 
leg’s own leg cycles into one combined walking cycle. We use 
a collection of eight different groups of walking cycles (one 
per leg) to generate an optimal walking gait for our robot. 

A. Evolving Fixed Length Leg Cycles 

In the previous section we learned walking cycle 
chromosomes for all eight legs in 200 generations with a 
desired length of 22 repetitions. We then saved the populations 
generated during this training and used them to learn leg cycles 
in the range of 15 to 30 repetitions inclusive. We achieved this 
by setting the starting population to be the 22-repetition 
population instead of a random one and did 200 generations of 
training on it with a desired length of 21. We then repeated this 
process with the 21-repetition population to learn a 20-
repetition chromosome, then a 19-repetition one and so forth 
until we had eight chromosomes ranging from 15 to 22 
repetitions inclusive. This was then repeated for the 22 to 30 
range starting with the 22-repetition population. The 16 
optimal chromosomes for each leg were then stored for use in 
gait training described in section 6C.  

B. Robot Model 

The training in this section is for the central controller that 
coordinates the eight leg controllers using timing signals. To 
achieve this, it needs to decide the total gait cycle length, 
which leg cycles to use for each leg and when to start and 
restart each leg cycle. The central stamp ensures that all the 
pulses are sent simultaneously so that the leg cycles stay 
synchronized. 

Unlike with the leg cycles, the gait coordination was 
learned using a standard GA because the cyclic behavior had 
already been learned. All we must learn now is which leg 
cycle length to use for each leg and at what time should each 

cycle be started and stopped. The chromosome used had nine 
genes and is shown in Fig. 9. 

The first gene, the gait cycle length (GCL), determined the 
total length of each leg cycle so that all leg cycles would loop 
at the same rate. The other eight genes each represented a 
different leg and were split into two parts - the leg cycle length 
(LCL) and the start time (START). The LCL would determine 
which of the 16-leg cycles in the 15-30 repetition range to use 
for each leg. If the LCL was longer than the GCL it would be 
truncated and if it was shorter it would be extended so that 
each leg cycle would match the GCL in length. The start time 
would determine where within the length of the GCL a 
particular leg would start and restart its cycle. If the start time 
was greater than the GCL, the leg would never start moving. 
The start time was the main factor in coordinating the leg. 
When the controller program begins, it counts the repetitions 
until the start time is reached, upon which the corresponding 
leg cycle would begin. And when the number of repetitions 
reached the GCL, the count would start again at zero. 

 In addition to knowing the timing of each leg cycle the 
model also had to know the position of each leg relative to the 
center of the robot’s body at any given time so as to determine 
the balance of the robot at each pulse which is discussed 
further in section 6C. To do this we had to measure how far 
the hinge for each leg was from the center of the body and 
incorporate this into the position of each foot by using the leg 
model data of the actual length of the leg and its current 
position relative to its hinge.  

C. Training 

We trained a population of 128 chromosomes over 1000 
Generations. Each individual’s fitness was calculated with the 
same fitness function as used in the individual leg training 
with the desired length removed and with each of the eight 
legs moving simultaneously in their respective positions. We 
also added balance and drag into the fitness calculation. 

Balance was calculated after all the legs had finished 
moving by one pulse by taking the area created by all the legs 
touching the ground. If the legs on the ground form a polygon 
with a large area that covers the center of gravity of the robot 
then it can be considered to be statically stable, with bigger 
areas being more stable. 

Dynamic pairs of legs (only two legs on the ground) 
forming a straight line through the center of gravity would 
measure as a 0 with this method of calculating balance. 
However, a dynamically stable pair of legs is better than any 
unstable group of legs. To represent this fact, we measured 

 

[GCL,[LCLR1,StartR1],[LCLL1,StartL1],…,[LCLR4, 

StartR4],[LCLL4, StartL4]] 

Figure 9.  Chromosomes used for learning to coordinate the individual leg 

cycles into a gait. It is made up of a Gait Cycle Length (GCL) and eight pairs 

of Leg Cycle Lengths (LCL) and Start times (Start) - one pair for each leg. 

the smallest possible area for a stable group of legs that 
formed a polygon and found it to be around 0.6. We judged 
that a dynamically stable pair of legs would be slightly worse 



  

than this and so our balance function returns a value of 0.5 for 
any such pair. 

With each pulse, the drag would be calculated per leg by 
checking if the leg was on the ground but not producing thrust. 
This was to penalize behaviors which would set the start time 
for certain legs to be higher than the gait cycle length which 
would cause them to remain motionless and provide constant 
stability despite being dragged along the ground by the other 
legs. 

Finally, we would only start calculating fitness after 31 
pulses, the maximum value of the gait cycle length, had passed 
so as not to unfairly favor gaits that had all the legs start sooner 
in the cycle rather than wait to get a properly timed gait. Using 
this fitness function individuals were chosen stochastically for 
crossover with the addition of elitism which would ensure the 
fittest individual in a population would be cloned into the new 
population. Crossover and mutation were both done the same 
as described in section 5B. 

D. Results 

Five independent tests were run starting with populations 
of random chromosomes. The best individuals of each 
generation were stored and the results are shown in Fig. 10. 
The graph shows the fitness growth of the five different 
populations. The cause of the discrete steps and flat lines is 
the use of elitism during training. In addition to this, the 
starting fitnesses of all the populations are well above 0. This 
is because all the individual leg cycles used are already near-
optimal and so no matter what combination and timing of the 
legs is used there will always be forward movement. Most 
populations learn adequate gaits by the 300-generation mark 
with only small improvements being made after that. In all 
cases near-optimal alternating tetrapod gaits are generated, 
similar to the gaits of biological spiders. 

 

Figure 10.  GA gait training coordinating the leg cycles used into a single gait. 

Every best chromosome from population 1 was uploaded 
to the real robot for testing to confirm the viability of the 
learned gaits. The results of this testing are shown in Fig. 11 
along with the training results for population 1 in Fig. 12 for 
comparison. The gait observed was the alternating tetrapod 
gait found in biological spiders. The distance moved plot (Fig. 

11) also closely matched the slope of the population 1 fitness 
graph (Fig. 12) which shows that the same rate of learning in 
simulation translates to an equivalent rate of progress on the 
real robot. The legs move vertically to their maximum throws 
to mitigate drag when the legs move upwards and increase grip 
when the leg is on the ground. The contraction servo moves 
accurately to ensure the movement of each leg stays straight 
and the robot doesn’t rotate as it walks. The gait is also fast as 
it switches between each stride step quickly and never lingers. 
We also uploaded the final chromosomes of the other four 
populations to the robot. All populations produced similar 
near-optimal results with the same alternating tetrapod gait 
pattern. 

VII. CONCLUSIONS 

With moderately simple fitness functions and minimal a 
priori knowledge, incremental evolution in two increments 
provides a simple yet effective means of evolving gaits for 

 

Figure 11.  Performance of the real robot using chromosomes sampled over 
the 1000 generations of training from population 1. Distance moved is 

measued as how far the robot moves in a straight line for 500 repetitions in 

millimeters. 

 

Figure 12.  GA gait training (in simulation) coordinating the leg cycles to 

learn a gait, highlighting population 1. 

 

legged robots with three degrees of freedom per leg. CGAs 
proved reliable in the first increment in generating near-
optimal cyclic behavior for individual legs through learning a 
sequence of pulses for a three-servo leg. It was shown in the 
simulation that the chromosomes produced by the CGA 
improved significantly during training and produced 



  

individual leg cycles which were observed to be viable when 
uploaded to the real robot. In the second increment, a GA can 
be used to coordinate the movements of the eight legs together 
into a near-optimal gait which is also observed in real-life 
spiders. Tests in the simulation and the actual robot confirm 
the viability of this method. 
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