Incremental Evolution of Three Degree-of-Freedom Arachnid Gaits

Gary B. Parker, Senior Member, IEEE, Manan B. M. Isak, and Jim O’Connor, Member, IEEE

Abstract— In this research, we evolve gaits for an arachnid-
inspired robot. The method used is an expansion upon previous
research on the incremental evolution of gaits for hexapod
robots with two degrees of freedom per leg, which we now apply
to a more complex, eight-legged robot with three degrees of
freedom per leg. Incremental evolution handles gait generation
for legged robots in two discrete increments. The first increment
uses a cyclic genetic algorithm to learn the activations (pulse
instructions to the servos) required for each leg to perform a
single-leg cycle. This learning program takes into account the
way each leg is mounted on the body and the range of movement
provided by the three servos on each leg to produce a smooth,
straight and efficient leg cycle. The second increment uses a
genetic algorithm to select the best combination of leg cycles for
each leg and to learn the timing to execute each leg cycle to
coordinate them all together into a single gait. In this work, we
learn the gait incrementally in a simulation and transfer the final
gaits to the real robot to confirm the method’s viability.

I. INTRODUCTION

The development of legged robots is very important
because they have multiple advantages over their wheeled
counterparts including better stability and adaptability in harsh
terrains. Gait generation plays an important part in the
development of legged robots. Manually creating commands
for legs with multiple degrees of freedom is difficult and even
if successful is unlikely to produce an optimal gait that makes
the most of the capabilities of the robot. In this research, we
take inspiration from nature to produce efficient gaits for an
eight-legged, bio-inspired, arachnid robot with three degrees
of freedom per leg. While we do not use a bio-inspired
controller, we predict the bio-inspired morphology of the robot
will influence the learning algorithm into creating a gait
similar to that of a biological spider.

The robot's capabilities need to be taken into consideration
when generating a walking cycle to make the best use of its
unique specifications. Here we break the gait into two discrete
parts to help with gait generation: the cyclic motion of each leg
and the coordination of all the legs together into one smooth
gait. The leg cycles for each leg are controlled by a
microprocessor assigned to that leg, which is similar to
biological spiders that have nerve ganglia associated with each
leg. Signals from a central processor to these leg processors
produces the resultant gait.

The robot in this work uses servos for actuators, which
require a pulse that dictates their exact position within the
physical range of each servo’s sweep. However, each pulse
may need to have different durations to account for the actual
movement speed of each servo. If two pulses in sequence are
too far apart in value they may be instructing the servo to move
further than it is physically capable of in just one pulse.

G. B. Parker, M. B. M. Isak, and J. O'Connor are with the Department of
Computer Science, Connecticut College, New London, CT 06320 USA (e-

Instead, a sequence of smaller pulse increments between two
pulses is required to produce a smooth and accurate motion,
which can then be looped to produce a movement cycle for one
leg.

Using learning methods for gait generation has been a topic
ofresearch over the past several years. Recent works have used
Deep Reinforcement Learning (DRL) to learn efficient
hexapod gaits for legged robots with more than two degrees of
freedom per leg [1]; however, the reward functions have a high
degree of complexity due to the number of degrees of freedom.
Learning and adjusting the reward function thus takes a
substantial amount of time and computing power in addition
to the time and computing power spent learning the problem
itself after the hyperparameters have been refined. However,
subsequent work has focused on speeding up the DRL process
to mitigate these disadvantages [2]. Other works have used
Central Pattern Generation (CPG) which takes inspiration
from the way sensory-motor nervous systems of real-life
insects handle walking [3]. While this method does make it
possible to generate a very natural gait with fewer parameters,
the a priori domain knowledge required to use this method is
larger than other approaches. Further works have combined
these approaches. Shafiee et al. combined DRL with CPG to
reduce the complexity of the reward function, sensors, and
hyperparameters. These two methods combined however still
have the disadvantage of needing a lot of prior knowledge [4].

We use an incremental learning approach using a cyclic
genetic algorithm because the design of the algorithm,
chromosomes and fitness functions are simple, the training
time is fast and it requires minimal a priori knowledge. The
few design choices we made that incorporated prior
knowledge were for reducing the complexity to allow the
controller to learn faster while still giving it enough learning
space to cover all possibilities. A cyclic genetic algorithm
(CGA) is a variation of the standard GA in which the
chromosome is a series of instructions in a loop which can also
have a tail of instructions on either end where pre and post-
cycle procedures can be executed. In our version, we only use
the loop with no tails. We omit the start section because it was
found in prior CGA research that it provided little benefit [5]
and we omit the end section because in this research our goal
is to produce a sustained forward gait. The final chromosome
for each leg contains the cycle of pulses that when executed
produce a walking cycle for one leg.

Past work has shown that efficient gaits for hexapod and
arachnid robots with two degrees of freedom per leg can be
learned using a CGA [6,7]. In these works the pulse widths
sent to the servos were not learned, just the general directions
of up/down and back/forward. Incremental learning of the
more complex controllers involving the need for sequences of

mail:  parker@conncoll.edu,
conncoll.edu).

misak@conncoll.edu, and joconno2@



pulse instructions to the servos has been used for a hexapod
robot with two degrees of freedom per leg [8]. In this paper,
we aim to expand on this gait generation work by using
incremental learning and a CGA to learn the walking gait of
an eight-legged robot with three degrees of freedom per leg.
The CGA is used to learn eight controllers each controlling
three servos to produce the leg cycle of one of the eight legs.
A GA is then used to learn one controller which controls the
timing with which each leg cycle should be executed to
organize a coordinated gait. Tests in simulation and on the real
robot confirm the viability of this method for producing gaits.

II. ARACHNID GAITS

Biological spiders use their eight legs to achieve the ability
to climb over obstacles and to continue stable movement even
after damaging one or two of their legs. These traits are
desirable in legged robots, which is why we will strive to
replicate them. We also want to mimic the speed and stability
of spider gaits. In research done on spider gaits [9] it was found
that the gait pattern in spiders remained constant as velocity
increased and decreased. The velocity of the spider is
controlled in proportion to the stride frequency whereas stride
length has little effect on the final velocity of the spider. The
gait used by the spider is the alternating tetrapod gait which
consists of two groups of legs being on the ground at any given
time. These groups are L1,R2,L.3,R4 and RI1,L2,R3,[4 as
shown in Fig. 1. This gait pattern ensures the center of mass of
the spider is within the perimeter of the large quadrilateral
made by the legs and effectors on the ground. Fig. 2 shows the
gait used by biological spiders, which we assume is optimal,
so we predicted that the gait pattern learned for our robot will
be the same since this gait is energy efficient, fast and stable.

Direction of Travel

L1 ' R1

L2 R2

L3 R3

L4 R4

Figure 1. Top-down view diagram of the robot and its eight legs, labeled L
(left) or R (right) and then 1-4 from front to back.

Direction of Travel

‘ R1

Direction of Travel

S |

R2 2

R4 L4
Figure 2. Alternating tetrapod gait used by biological spiders.

III. THE ROBOT

The robot used in this research was developed in the
Connecticut College Autonomous Agent Learning Lab by
Sarah Dashnaw for experiments with arachnid gaits and is
shown in Fig. 3. It is a custom-made eight-legged robot
inspired by the ServoBot which was used in previous gait
generation research [6]. The ServoBot is a hexapod robot with
twelve servos and thus two degrees of freedom per leg which
provides thrust and vertical movement. Like the ServoBot, this
eight-legged robot design is inexpensive and easy to assemble.
It also requires that the vertical servos need the legs at the
extremes of their throw (fully up or fully down) to hold the
weight of the robot. In addition, the servos are not strong
enough to forcefully lift the robot from a fully down position
to a fully up position unless more than half the legs are on the
ground. This means an energy-efficient and balanced gait is
required for the robot to move without collapsing under its
weight. This robot differs from the ServoBot in that it has eight
legs, 24 servos, and thus three degrees of freedom per leg, and
the legs are placed radially on an elliptical body (instead of in-
line on a rectangular body) to mimic biological spiders. The
developer chose to place the legs radially to emphasize the
importance of the third degree of freedom, the
extension/contraction degree, in the generation of straight
movement on the ground. If this third degree of freedom is not
exploited by the cyclic genetic algorithm, the radial nature of
the placement of the legs would cause the final gait to rotate
the robot resulting in an inefficient gait.

There are certain advantages to eight-legged robots
compared to their six-legged and four-legged counterparts.
They can maintain better static stability at high speeds due to
being able to have four legs on the ground at any given time
and they can still maintain static stability even if one or two
legs are broken or missing. On the other hand, disadvantages
include having more moving parts and thus being harder to
build and maintain, and the extra control instructions added by
two more legs and increased degrees of freedom add
complexity to the learning process.

The robot is controlled by eight BASIC Stamp 2s, one for
each leg, and a central BASIC Stamp 2p40 to coordinate the
timing of the legs. Each leg’s controller can store a sequence
of pulses to be executed on its respective leg’s three servos.
The central controller then sends signals to each of the eight
leg controllers instructing them when to start their sequences



Figure 3. Images showing the robot’s construction and circuitry.
and restart their sequences, whether it is after the sequence has
ended or if it is early and the sequence gets cut short.

The servos can be set to specific angular positions by
sending a 10 to 1,250-microseconds-long control pulse. This
pulse needs to be repeated every 25 milliseconds to continually
control the servo motors. If the angular position between two
consecutive pulses is too different, the servo cannot move the
leg fast enough to reach the desired position within one pulse.
The speed of the movement can be controlled by incrementally
changing the length of control pulses sent to the servos. For
example, a set of pulses such as 70, 75, 80, 85, and 90 would
make the servo move slower from 70 to 90 than if we’d used
control pulses 70, 80, and 90. Each servo is also unique in
regards to what pulse corresponds to what position. Some may
have a full back position at a pulse length of 200 microseconds
while others may be fully back with a pulse length of 20
microseconds. We must account for the peculiarities of each
servo and their maximum speed in our learning algorithm and
control program.

IV. CycLIC GENETIC ALGORITHMS

The Cyclic Genetic Algorithm (CGA) is a variation of the
Genetic Algorithm (GA). Instead of using the chromosome’s
genes as a list of characteristics of the solution, the CGA
incorporates time into the chromosome and uses each gene as
a task to be executed in order. A loop can then also be
incorporated over a portion of the chromosome creating a
cycle. This makes a sequential program with a start section,

iterative section and stop section. These differences are
illustrated in Fig. 4. For our problem, we only made use of the
iterative section.

V. FIRST INCREMENT: EVOLVING LEG CYCLES

Our CGA needs to learn eight sequences of pulses that can
be transferred to PBASIC programs, uploaded to the eight
BASIC Stamp 2s, and then looped on each stamp. We chose
to use fixed-length chromosomes as they are more compatible
since similar genes are more likely to correspond to similar
tasks. We also made some adjustments to the representation
of the pulses, as being accurate to 1 microsecond in a 10 to
1,250-microsecond range was unnecessary. Pulses that
differed by less than 10 microseconds were virtually
indistinguishable from each other, so we chose to have our
chromosome represent pulses in 10 microsecond increments.
The final range was then determined to be 1-125 for each
servo. This can then be represented by a 7-bit number and so
a single signal to all three servos can be represented by a 21-
bit number. We also found that the total number of pulse
signals required to go from the minimum throw to the
maximum throw was around 100. To allow for the learning
algorithm to also be able to instruct one gene to move the full
throw at a slower pace we decided to set the range of
repetitions to be 0 to 310 in 10 pulse signal increments which
can be represented by a five-bit number. We chose 310 as the
new maximum number of repetitions so as to allow the
controller to be able to execute up to approximately %5 times
slower movements to increase the portion of time the leg
spends on the ground and to allow the vertical servo, which
always moves at maximum speed, to instruct the leg to
approach and leave the ground at steeper or shallower angles
to mitigate negative thrust.

Smooth movement is required for the horizontal and
extension/contraction servos to avoid harsh movements and
to maintain a stable and straight gait. A smooth movement can
be achieved by spacing the intervals of pulses between two
control pulse instructions evenly i.e., instead of having
intervals of pulses like 10, 40, 50, 100 we would instead space
them evenly like 25, 50, 75, 100. We account for this in our
learning algorithm and the final controller by taking the two
consecutive control pulses and dividing them up into

Classic GA

CGA Sequence CGA With Cycle

trait |
trait 1
trait 1
trait 2
trait 3
trait 2
trait 2

task 1
task 2
task 3
task 4
task S
task &
task 7

task 1
task 2
task 3
task 4
task S5
task 6
task 7

Start
Section

Iterative

trait 4 task & Section task 8
trait 4 task 9 task 9
trait S task 10 task 10
trait 6 task 11 task 11
trait © task 12 task 12
trait & task 13 Stop. task 13
Section
trait 6 task 14 task 14

Figure 4. A GA chromosome compared with a CGA chromosome.

several evenly spaced pulses equal to the number of repetitions
for that instruction, allowing the system to avoid exceeding the



servos’ maximum speed measured in change in pulse length
per pulse. To do this we use (1). We do not learn this
smoothness in the cyclic genetic algorithm because it is trivial
to implement an interpolation function in the simulation and
the final controller. The design goal for our chromosome is for
it to learn what position the servos should move to next and
how quickly that movement should be done, not the
smoothness of each movement.

pulse increment = min[(horizontal pulse — previous
horizontal pulse)/repetitions, max speed] @)

We do not need smoothness on the vertical servo since it
does not affect the robot’s movement and so the vertical servo
will always move at its maximum speed. Note also that we
use the term “repetitions” in our chromosome to refer to the
number of steps one move should take to complete. A more
accurate term for the horizontal and extension/contraction
movements would be “interpolation steps”, but we choose to
use repetitions because all the previous papers involving
cyclic genetic algorithms used repetitions to refer to the steps
and we wish to keep the this terminology consistent.

We based our chromosome, shown in Fig. 5, on the design
used in previous work [6]. Each gene is structured the same
and is made up of repetitions and pulses. However, we made
three key differences. We have added a third pulse, the
extension pulse, to each gene in order to control the third
extension/contraction degree of freedom per leg. In addition,
we have increased the length of the repetitions part to range 0-
31 represented by five bits to allow more movement to be
achieved in one instruction due to the increased size of the
robot and therefore the increased range of its motion. Finally,
we chose to use a total of four genes instead of the original
eight because it was found that half of the genes would learn
to set their repetitions to 0 and be unused. In other words, four
genes were sufficient to represent the instructions to the servos
to produce a good leg cycle. These decisions on the max
number of repetitions, the number of genes, and the pulse
signal increments of 10 represent the extent of the a priori
knowledge we used. Since each gene would individually be
longer, we decided to cut down on the number of genes to keep
chromosome length roughly the same without compromising
on the freedom of the learning algorithm to learn. The final
chromosome ends up being 104 bits long.

The final chromosomes resulting from the training can be
uploaded directly to their respective leg’s stamp and when
executed would execute the instructions sent to the three
servos. A set of pulses made by an example chromosome is
shown in Fig. 6.

[[R1,HP1,EP1,VP1],[R2,HP2,EP2,VP2],[R3,HP3,EP3,VP3],
[R4,HP4,EP4,VP4]]
Figure 5. Leg cycle chromosome. Each of the four genes is made of three

parts: repetitions (R), horizontal pulse (HP), extension pulse (EP) and vertical
pulse (VP).

Genes Horizontal Extension Vertical
Pulse Pulse Pulse
[6, 125, 20, 0] 40 55 0
57 48 0
74 41 0
91 34 0
108 27 0
125 20 0
[3, 68, 62, 100] 106 34 100
87 48 100
68 62 100
[3,23,62,42] 53 62 42
38 62 42
23 62 42

Figure 6. A sequence of pulses generated by looping three example genes.
In bold are the pulses dictated by the genes with all the other pulses being in-
between pulses in even steps. The exception is for the vertical pulses since
the vertical servo will always move at maximum speed. Due to the cyclic
nature of the chromosome, [40, 55, 0] is not the starting position of the servos
but the next step after [23, 62, 42]. The servos could start in any position and
eventually converge to this pulse set after enough loops.

A. Leg Model

Each leg’s capabilities were measured and the data was
stored in a simple model of the leg that held the leg’s current
position and its previous position along with the capability
data. Each position consisted of a horizontal, extension and
vertical component. Each horizontal component was defined
as 0 when the leg was fully forwards and its maximum throw
was fully backwards. The extension component was defined
as 0 when the leg was fully inwards and closest to the body
and its maximum throw was fully extended. The vertical
component was defined as 0 when the leg was fully down and
its maximum throw was when it was fully up. The ranges of
all the maximum throws were measured and stored in the
model.

We also had to account for the fact that a vertical position
of 1 was still touching the ground and in fact, a higher vertical
position was required before it stopped dragging. This was
measured and stored as a “ground level” constant that the
vertical component had to exceed before the leg was
considered to be off of the ground.

In addition, we had to account for the fact that the
movement per pulse of the leg would decrease as it approached
the extremes of its throw. Previous research handled this with
a lookup table, however, the extra degrees of freedom and the
extra two legs made this method impractical as the number of
measurements we would have to take would be too time-
consuming when there are quicker and comparable methods to
use.

Instead, we analyzed the general movement of the servos
and noted that they had fairly consistent performance for the
middle chunk of their throw. We used this information to focus
our measurements on the extremes of the throw and analyzed
how the distance moved per pulse sharply decreased. We then
took measurements and generalized them using a curve fitted
to these measurements which the model can use to determine
how much it can move at the extremes of its throw. This
provided a sufficient level of accuracy for our model.



B. Training

We used a population of 128 chromosomes for each leg
with each chromosome representing a single leg cycle. Our
goal was to produce eight different populations each
generating a leg cycle for a single leg. We trained each
population for 1,000 generations on their respective leg
models.

We used a different fitness function from past research to
account for some of the changes we made to the chromosomes
and to improve the final gait based on the findings found in
past research. Our final fitness function took into account the
effective thrust of each leg, which depends on the forward
movement of the leg, how straight the leg moves and the
vertical position of the leg. Forward movement was calculated
by taking the distance the horizontal degree moved while it
was on the ground, whether it was positive or negative. We
did this despite there being a third degree of freedom
contributing to the movement because the horizontal degree
still provides most of the thrust while the extension degree
mostly works to ensure the leg remains straight throughout its
throw.

In addition to forward movement, our fitness function
included straightness and height. Straightness was calculated
by taking the exact position of the leg before and after moving
along the ground and taking the absolute value of how parallel
the movement was to the direction of travel. Lower
straightness values were better, so we subtracted them from
the fitness function. Height was just retrieved from the leg
model’s position as the vertical extension above the ground.
We added this because our model now accounts for the fact
that the leg is actually touching the ground over a range of
values from 0 to our measured “ground level”. We can use
this information to represent the fact that the lower the leg is
extended downwards the more weight is put on that leg and
therefore more friction is produced by that leg which results
in a more effective horizontal movement. Inversely, negative
movement is also less detrimental when the leg is higher up
and only barely touching the ground.

To represent this inverse relationship between the grip and
the vertical extension while it's below the “ground level” we
simply divide the effective thrust by the current up position
(plus 1 to avoid division by 0). It is also important to note that
no fitness is added while the leg is in the air since forward
movement and straightness are both 0 when the leg is not
touching the ground. This culminated in the following formula
for calculating the effective thrust:

thrust = (forward movement — straightness)/(up
position+1) 2)

The fitness for each chromosome was calculated once per
gene as the chromosome was looped through 100 times to
ensure a cyclic behavior was learned. The best chromosomes
would learn to reset their positions at the end of the cycle so
that the next loop would be ready to start again. The fitness
was then used to stochastically select chromosomes to
produce each new generation. We used uniform crossover at
a 100% crossover rate, and we used two types of mutation -
inter-gene and intra-gene mutation. Inter-gene mutation resets
an entire gene to a random gene while intra-gene mutation
only flips a single bit at a time. After the selection, crossover,

and mutation were performed, the population would be
subjected to a cleanup function which would take any genes
with zero repetitions and move them to the end of the
chromosome. This was to ensure that any learning that
resulted in not using all the genes would not be lost
immediately during crossover.

C. Results

Training was done over 200 generations with the fittest
individuals saved every 5 generations. The results are shown
in Fig. 7. Each solid line represents a leg. All legs learned
quickly and settled at an optimal fitness matching their
opposite leg i.e. legs L1 and R1 had similar fitnesses and legs
L2 and R2 had similar fitnesses. We found the total optimal
lengths of the leg cycle to be in the range of 19-22 repetitions.
We then repeated the training to prepare for the second
increment of learning described in the next section. We added
a new component to the fitness function called “desired
length”. Desired length was calculated as the absolute value of
the total repetitions in the chromosome subtracted from an
inputted desired number of repetitions. The lower the number
the higher the fitness so desired length was subtracted from the
total fitness. The length used was 22 repetitions since that was
the maximum optimal length found after the initial training.
We chose the maximum optimal length because a longer leg
cycle would be more useful in further experimentation.

The results of the new training are shown in Fig. 8. Since
an optimal cycle length was specified, all the legs learned
rapidly at the beginning of the training and most of them
settled quickly on a near-optimal solution. We tested the
results on the real robot and we observed that at 22 repetitions
all legs produced efficient and straight leg cycles with plenty
of clearance above ground level. However, at this point, we
could not measure how far these legs could walk before we
coordinated the movement together into a gait.

Individual Leg Training

800 = L1

600

Fitness
IS
S
o
<
>S3
g& S
i’

200

50 100 150 200

Generation

Figure 7. Training results for all eight legs learning their own individual leg
cycle.



Individual Desired Leg Training

2000 - L1
=- R1
L2
- R2
- |3
R3
L4
R4

1500

Fitness

500

50 100 150 200

Generation

Figure 8. Single leg training with a desired length of 22 repetitions
specified. Although the legs do not produce more forward thrust than those
shown in Fig. 7, the fitness values are much higher due to the incorporation
of the “desired length” into the fitness function

VI. SECOND INCREMENT: EVOLVING GAITS FROM THE LEG
CYCLE

The key to incremental learning is the observation that any
uniform gait for a legged robot is just the coordination of each
leg’s own leg cycles into one combined walking cycle. We use
a collection of eight different groups of walking cycles (one
per leg) to generate an optimal walking gait for our robot.

A. Evolving Fixed Length Leg Cycles

In the previous section we learned walking cycle
chromosomes for all eight legs in 200 generations with a
desired length of 22 repetitions. We then saved the populations
generated during this training and used them to learn leg cycles
in the range of 15 to 30 repetitions inclusive. We achieved this
by setting the starting population to be the 22-repetition
population instead of a random one and did 200 generations of
training on it with a desired length of 21. We then repeated this
process with the 21-repetition population to learn a 20-
repetition chromosome, then a 19-repetition one and so forth
until we had eight chromosomes ranging from 15 to 22
repetitions inclusive. This was then repeated for the 22 to 30
range starting with the 22-repetition population. The 16
optimal chromosomes for each leg were then stored for use in
gait training described in section 6C.

B. Robot Model

The training in this section is for the central controller that
coordinates the eight leg controllers using timing signals. To
achieve this, it needs to decide the total gait cycle length,
which leg cycles to use for each leg and when to start and
restart each leg cycle. The central stamp ensures that all the
pulses are sent simultaneously so that the leg cycles stay
synchronized.

Unlike with the leg cycles, the gait coordination was
learned using a standard GA because the cyclic behavior had
already been learned. All we must learn now is which leg
cycle length to use for each leg and at what time should each

cycle be started and stopped. The chromosome used had nine
genes and is shown in Fig. 9.

The first gene, the gait cycle length (GCL), determined the
total length of each leg cycle so that all leg cycles would loop
at the same rate. The other eight genes each represented a
different leg and were split into two parts - the leg cycle length
(LCL) and the start time (START). The LCL would determine
which of the 16-leg cycles in the 15-30 repetition range to use
for each leg. If the LCL was longer than the GCL it would be
truncated and if it was shorter it would be extended so that
each leg cycle would match the GCL in length. The start time
would determine where within the length of the GCL a
particular leg would start and restart its cycle. If the start time
was greater than the GCL, the leg would never start moving.
The start time was the main factor in coordinating the leg.
When the controller program begins, it counts the repetitions
until the start time is reached, upon which the corresponding
leg cycle would begin. And when the number of repetitions
reached the GCL, the count would start again at zero.

In addition to knowing the timing of each leg cycle the
model also had to know the position of each leg relative to the
center of the robot’s body at any given time so as to determine
the balance of the robot at each pulse which is discussed
further in section 6C. To do this we had to measure how far
the hinge for each leg was from the center of the body and
incorporate this into the position of each foot by using the leg
model data of the actual length of the leg and its current
position relative to its hinge.

C. Training

We trained a population of 128 chromosomes over 1000
Generations. Each individual’s fitness was calculated with the
same fitness function as used in the individual leg training
with the desired length removed and with each of the eight
legs moving simultaneously in their respective positions. We
also added balance and drag into the fitness calculation.

Balance was calculated after all the legs had finished
moving by one pulse by taking the area created by all the legs
touching the ground. If the legs on the ground form a polygon
with a large area that covers the center of gravity of the robot
then it can be considered to be statically stable, with bigger
areas being more stable.

Dynamic pairs of legs (only two legs on the ground)
forming a straight line through the center of gravity would
measure as a 0 with this method of calculating balance.
However, a dynamically stable pair of legs is better than any
unstable group of legs. To represent this fact, we measured

[GCL,[LCLRI,StartR1],[LCLL1,StartL1],...,[LCLR4,
StartR4],[LCLL4, StartL4]]

Figure 9. Chromosomes used for learning to coordinate the individual leg
cycles into a gait. It is made up of a Gait Cycle Length (GCL) and eight pairs
of Leg Cycle Lengths (LCL) and Start times (Start) - one pair for each leg.

the smallest possible area for a stable group of legs that
formed a polygon and found it to be around 0.6. We judged
that a dynamically stable pair of legs would be slightly worse



than this and so our balance function returns a value of 0.5 for
any such pair.

With each pulse, the drag would be calculated per leg by
checking if the leg was on the ground but not producing thrust.
This was to penalize behaviors which would set the start time
for certain legs to be higher than the gait cycle length which
would cause them to remain motionless and provide constant
stability despite being dragged along the ground by the other
legs.

Finally, we would only start calculating fitness after 31
pulses, the maximum value of the gait cycle length, had passed
so as not to unfairly favor gaits that had all the legs start sooner
in the cycle rather than wait to get a properly timed gait. Using
this fitness function individuals were chosen stochastically for
crossover with the addition of elitism which would ensure the
fittest individual in a population would be cloned into the new
population. Crossover and mutation were both done the same
as described in section 5B.

D. Results

Five independent tests were run starting with populations
of random chromosomes. The best individuals of each
generation were stored and the results are shown in Fig. 10.
The graph shows the fitness growth of the five different
populations. The cause of the discrete steps and flat lines is
the use of elitism during training. In addition to this, the
starting fitnesses of all the populations are well above 0. This
is because all the individual leg cycles used are already near-
optimal and so no matter what combination and timing of the
legs is used there will always be forward movement. Most
populations learn adequate gaits by the 300-generation mark
with only small improvements being made after that. In all
cases near-optimal alternating tetrapod gaits are generated,
similar to the gaits of biological spiders.

Leg Coordination Training

== Pop1Fitness == Pop2 Fitness Pop3 Fitness == Pop4 Fitness

== Pop5 Fitness

65000

62500

60000

Fitness

57500

55000
200 400 600 800 1000

Generation

Figure 10. GA gait training coordinating the leg cycles used into a single gait.

Every best chromosome from population 1 was uploaded
to the real robot for testing to confirm the viability of the
learned gaits. The results of this testing are shown in Fig. 11
along with the training results for population 1 in Fig. 12 for
comparison. The gait observed was the alternating tetrapod
gait found in biological spiders. The distance moved plot (Fig.

11) also closely matched the slope of the population 1 fitness
graph (Fig. 12) which shows that the same rate of learning in
simulation translates to an equivalent rate of progress on the
real robot. The legs move vertically to their maximum throws
to mitigate drag when the legs move upwards and increase grip
when the leg is on the ground. The contraction servo moves
accurately to ensure the movement of each leg stays straight
and the robot doesn’t rotate as it walks. The gait is also fast as
it switches between each stride step quickly and never lingers.
We also uploaded the final chromosomes of the other four
populations to the robot. All populations produced similar
near-optimal results with the same alternating tetrapod gait
pattern.

VII. CONCLUSIONS

With moderately simple fitness functions and minimal a
priori knowledge, incremental evolution in two increments
provides a simple yet effective means of evolving gaits for

Population 1 Real Distance Moved
400

300

Real Distance Moved (mm)

100

200 400 600 800 1000

Generation

Figure 11. Performance of the real robot using chromosomes sampled over
the 1000 generations of training from population 1. Distance moved is
measued as how far the robot moves in a straight line for 500 repetitions in
millimeters.

Population 1 Coordination Training
64000

63000

62000

Fitness

61000
80000

59000
200 400 600 800 1000

Generation

Figure 12. GA gait training (in simulation) coordinating the leg cycles to
learn a gait, highlighting population 1.

legged robots with three degrees of freedom per leg. CGAs
proved reliable in the first increment in generating near-
optimal cyclic behavior for individual legs through learning a
sequence of pulses for a three-servo leg. It was shown in the
simulation that the chromosomes produced by the CGA
improved significantly during training and produced



individual leg cycles which were observed to be viable when
uploaded to the real robot. In the second increment, a GA can
be used to coordinate the movements of the eight legs together
into a near-optimal gait which is also observed in real-life
spiders. Tests in the simulation and the actual robot confirm
the viability of this method.

(1]

(2]

(3]

(8]

(9]

REFERENCES

J. Hwangbo et al., “Learning agile and dynamic motor skills for
legged robots,=” Sci. Robot. 4, 2019. DOL:
10.1126/scirobotics.aau5872

T. Haarnoja et al., “Learning to Walk via Deep Reinforcement
Learning,” CoRR, 2018, abs/1812.11103.
https://arxiv.org/abs/1812.11103.

M. Ajallooeian, S. Pouya, A. Sproewitz and A. J. [jspeert, "Central
Pattern Generators augmented with virtual model control for
quadruped rough terrain locomotion," 2013 IEEE International
Conference on Robotics and Automation, 2013, pp. 3321-3328, doi:
10.1109/ICRA.2013.6631040.

M. Shafiee, G. Bellegarda and A. [jspeert, "Puppeteer and Marionette:
Learning Anticipatory Quadrupedal Locomotion Based on
Interactions of a Central Pattern Generator and Supraspinal Drive,"
2023 IEEE International Conference on Robotics and Automation,
2023, pp. 1112-1119, doi: 10.1109/ICRA48891.2023.10160706.

G. B. Parker, “Evolving Leg Cycles to Produce Hexapod Gaits,”
Proceedings of the World Automation Congress (WAC2000), Volume
10, Robotic and Manufacturing Systems,

June 2000, pp. 250-255.

G. B. Parker, D. W. Braun, and I. Cyliax, “Evolving Hexapod Gaits
Using a Cyclic Genetic Algorithm,” IASTED International
Conference on Atrtificial Intelligence and Soft Computing, 1997, pp.
141-144.

G. B. Parker, “Generating Arachnid Robot Gaits with Cyclic Genetic
Algorithms,” Genetic Programming, 1998, pp. 576-583.

G. B. Parker, “The Incremental Evolution of Gaits for Hexapod
Robots,” Genetic and Evolutionary Computation Conference, 2001,
pp. 1114-1121.

Z.Y. Wang, J. T. Wang, A. H. Ji, H. K. Li & Z. D. Dai, “Movement
behavior of a spider on a horizontal surface,” Chin. Sci. Bull. 56,
2011, pp. 2748-2757. https://doi.org/10.1007/s11434-011-4584-y



